数据包络分析法(DEA) R实现

概念

  数据包络分析(Data envelopment analysis,DEA)是运筹学中用于测量决策部门生产效率的一种方法,它是基于相对效率发展的崭新的效率评估方法。 详细来说,通过使用数学规划模型,计算决策单元相对效率,从而评价各个决策单元。每个决策单元(Decision Making Units,DMU)都可以看作为相同的实体,各 DMU 有相同的输入、输出。综合分析输入、输出数据,DEA 可得出各个 DMU 的综合效率,据此定级排队 DMU,确定有效(即相对效率最高)DMU,挖掘其他 DMU非有效的程度和缘由。
  DEA 模型有多种类型,最具代表性有CCR 模型,BCC模型。CCR 模型基于规模报酬不变的假设,而BCC模型则基于规模报酬可变的假设,二者各有侧重,可以选择结合两个方法同时展开数据分析。

样例

  在实际使用中,首先搭建模型确认相应的投入指标、产出指标。比如在计算银行的效率时选择了成本收入比、员工数量、资本充足率为投入指标,净利润、净资产收益率、营业收入为产出指标。

R实现

数据导入

  这里使用R的deaR包,导入的数据格式如下:

年份投入1投入n产出1产出m
2008
2009
2017
  在样例中,投入指标有3个,产出指标也有3个,整合在csv中导入R。这个csv文件第一列是行号,2到4列是投入数据,5到7列是产出数据。
library('deaR')
library(readxl)
data <- read.csv('data.csv')
data_basic <- read_data(data,
                        dmus = 1,
                        inputs = 2:4,
                        outputs = 5:7)
CCR
result_data <- model_basic(data_basic,
                          dmu_eval = 1:10,
                          dmu_ref = 1:10,
                          orientation = 'io',
                          rts = 'crs')
summary(result_data)

  这里的summary可以生成一个excel文件,包含"efficiencies"、“slacks”、“lambdas”、“targets”、“returns”、"references"等sheets,“efficiencies”里面的数值就是总技术效率,若 θ \theta θ为1则DEA有效,否则无效。

BCC
esult_data_bbc<- model_basic(data_basic,
                           dmu_eval = 1:10,
                           dmu_ref = 1:10,
                           orientation = 'oo',
                           rts = 'vrs')
summary(result_data_bbc)

  同样的,这里的summary可以生成一个excel文件,和R代码在同一文件夹,这个excel文件里面有多个sheet,“efficiencies”里面的数值就是纯技术效率,规模效率 ρ = θ σ \rho=\frac{\theta}{\sigma} ρ=σθ, 若 ρ \rho ρ为1则规模有效,否则规模无效。
  关于数据包络分析的具体阐述就围绕上面的三类效率(总技术效率、纯技术效率、规模效率)展开。

评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值