2648: SJY摆棋子
Time Limit: 20 Sec Memory Limit: 128 MB
Submit: 4914 Solved: 1688
[Submit][Status][Discuss]
Description
这天,SJY显得无聊。在家自己玩。在一个棋盘上,有N个黑色棋子。他每次要么放到棋盘上一个黑色棋子,要么放上一个白色棋子,如果是白色棋子,他会找出距离这个白色棋子最近的黑色棋子。此处的距离是 曼哈顿距离 即(|x1-x2|+|y1-y2|) 。现在给出N<=500000个初始棋子。和M<=500000个操作。对于每个白色棋子,输出距离这个白色棋子最近的黑色棋子的距离。同一个格子可能有多个棋子。
Input
第一行两个数 N M
以后M行,每行3个数 t x y
如果t=1 那么放下一个黑色棋子
如果t=2 那么放下一个白色棋子
Output
对于每个T=2 输出一个最小距离
Sample Input
2 3
1 1
2 3
2 1 2
1 3 3
2 4 2
Sample Output
1
2
HINT
kdtree可以过
Source
鸣谢 孙嘉裕
sol:
使用kd树就可以轻松的a掉这题
不会重构的kd树,我的kd树就是个朴素暴力。
kd树对加入树中的点进行划分,在奇数层按照x坐标排序,在偶数层按照y坐标排序,可以把多维空间上的点通过有技巧的划分来大大降低搜索的复杂度。对于树上的一个节点,先把这个节点理论中可能出现的最优解和当前答案比对,如果比答案优则向下拓展。
#include<iostream>
#include<algorithm>
#include<cmath>
#include<string>
#include<cstring>
#include<cstdio>
#include<cstdlib>
using namespace std;
const int N=1010000;
const int inf=1e9;
int n,m;
int l[N],r[N];
struct cc
{
int x,y,mix,miy,max,may;
}a[N],tr[N];
int dis(cc c,int a,int b)
{
return abs(c.x-a)+abs(c.y-b);
}
int f;
bool cmp(cc a,cc b)
{
if(f) return a.y<b.y;
return a.x<b.x;
}
void updata(int k)
{
tr[k].miy=min(tr[l[k]].miy,min(tr[r[k]].miy,tr[k].y));
tr[k].mix=min(tr[l[k]].mix,min(tr[r[k]].mix,tr[k].x));
tr[k].may=max(tr[l[k]].may,max(tr[r[k]].may,tr[k].y));
tr[k].max=max(tr[l[k]].max,max(tr[r[k]].max,tr[k].x));
}
void build(int &k,int flag,int L,int R)
{
k=L+R>>1;
f=flag;
nth_element(a+L,a+k,a+1+R,cmp);
tr[k]=a[k];
if(L<=k-1) build(l[k],flag^1,L,k-1);
if(k+1<=R) build(r[k],flag^1,k+1,R);
updata(k);
}
inline bool cmp_x(int k,int x)
{
return tr[k].x<x;
}
inline bool cmp_y(int k,int y)
{
return tr[k].y<y;
}
void insert(int &k,int flag,int x,int y)
{
if(!k)
{
k=++n;
tr[k].x=tr[k].mix=tr[k].max=x;
tr[k].y=tr[k].miy=tr[k].may=y;
return;
}
int d=flag?cmp_y(k,y):cmp_x(k,x);
if(d) insert(r[k],flag^1,x,y);
else insert(l[k],flag^1,x,y);
if(d) d=r[k];
else d=l[k];
tr[k].mix=min(tr[k].mix,tr[d].mix);
tr[k].max=max(tr[k].max,tr[d].max);
tr[k].miy=min(tr[k].miy,tr[d].miy);
tr[k].may=max(tr[k].may,tr[d].may);
}
int pre_dis(cc c,int a,int b)
{
int res=0;
res+=max(c.mix-a,0);
res+=max(a-c.max,0);
res+=max(c.miy-b,0);
res+=max(b-c.may,0);
return res;
}
int ans;
void query(int k,int x,int y)
{
if(!k) return;
int fx,fy;
fx=fy=inf;
ans=min(ans,dis(tr[k],x,y));
if(l[k]) fx=pre_dis(tr[l[k]],x,y);
if(r[k]) fy=pre_dis(tr[r[k]],x,y);
if(fx<fy)
{
if(ans>fx) query(l[k],x,y);
if(ans>fy) query(r[k],x,y);
}
else
{
if(ans>fy) query(r[k],x,y);
if(ans>fx) query(l[k],x,y);
}
// if(l[k]&&ans>pre_dis(tr[l[k]],x,y)) query(l[k],x,y);
// if(r[k]&&ans>pre_dis(tr[r[k]],x,y)) query(r[k],x,y);
}
inline int read()
{
char c;
bool flag=false;
while((c=getchar())>'9'||c<'0')
if(c=='-')flag=true;
int res=c-'0';
while((c=getchar())>='0'&&c<='9')
res=(res<<3)+(res<<1)+c-'0';
return flag?-res:res;
}
int root;
int main()
{
// freopen("2648.txt","r",stdin);
n=read();m=read();
int x,y;
for(int i=1;i<=n;++i)
a[i].x=read(),a[i].y=read();
tr[0].mix=tr[0].miy=inf;
tr[0].max=tr[0].may=-inf;
build(root,0,1,n);
int flag;
for(int i=1;i<=m;++i)
{
ans=inf;
flag=read();
x=read();y=read();
if(flag==1) insert(root,0,x,y);
else query(root,x,y),printf("%d\n",ans);
}
}