给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174
,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767
开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个 (0,104) 区间内的正整数 N。
输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000
;否则将计算的每一步在一行内输出,直到 6174
作为差出现,输出格式见样例。注意每个数字按 4
位数格式输出。
输入样例 1:
6767
输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例 2:
2222
输出样例 2:
2222 - 2222 = 0000
代码:
#include<bits/stdc++.h>
using namespace std;
int main(void){
string a,b,temp;
cin>>a;
while(1){
while(a.size()<4) a="0"+a;
sort(a.begin(),a.end());
b=a;
reverse(a.begin(),a.end());
int a1=stoi(a);
int b1=stoi(b);
temp=to_string(a1-b1); //这里用了一个变量存储数值,避免了重复计算导致的超时
while(temp.size()<4) temp="0"+temp; //要考虑不足4位数的需要补齐,这是题目留的坑
cout<<a<<" - "<<b<<" = "<<temp<<endl;
if(temp=="0000") break;
if(temp=="6174") break;
a=temp;
}
return 0;
}