给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个 (0,104) 区间内的正整数 N。
输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000;否则将计算的每一步在一行内输出,直到 6174 作为差出现,输出格式见样例。注意每个数字按 4 位数格式输出。
输入样例 1:
6767
输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例 2:
2222
输出样例 2:
2222 - 2222 = 0000
解题思路
将输入数据依次取余获得四个位置上的数字,将其存入数组中,使用sort排序,降序结果为最大,增序结果为最小,做减法循环即可。
注意要点
测试用例5给的是6174!!所以代码的while循环不可以使用number!=6174,选择while(1)然后6174为脱离条件保证可以输出7641 - 1467 = 6174;
sort()排序函数,头文件为
#include<algorithm>
sort(number,number+4)为升序排列
bool compare(int a,int b){
return a > b
}
sort(number,number+4,compare)为降序排列
!!关于cout函数输出固定位数,不足补0的代码模板
#include<iomanip>
cout<<setw(4)<<setfill('0')<<number_max;
下次遇到这种直接用printf输出printf("%04d",number_max);
扩展
scanf保存指定位数变量,例如输入12345678,scanf("%2d,%4d,%4d",&a,&b);