# 深度学习：tensorflow入门：单层（全连接层）神经网络实现MNIST手写字体识别

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_integer('is_train', 1, "指定程序预测还是训练")

def fullconnected():

# 获取真实的数据

# 1、建立数据的占位符  x [None, 784] y_ture[None, 10]
with tf.variable_scope("data"):
x = tf.placeholder(tf.float32, [None, 784])

y_true = tf.placeholder(tf.int32, [None, 10])

# 2、建立一个全连接层的神经网络   w [784, 10]  b[10]
with tf.variable_scope("fc"):
# 随机初始化权重和偏置
weight = tf.Variable(tf.random_normal([784, 10], mean=0.0, stddev=1.0), name="w")

bias = tf.Variable(tf.constant(0.0, shape=[10]))

# 预测None个样本的输出结果  matrix [None, 784] * [784, 10] + [10] = [None, 10]
y_predict = tf.matmul(x, weight) + bias

# 3、求出所有样本的损失，然后求平均值
with tf.variable_scope("soft_cross"):

# 求平均交叉熵损失
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_predict))

# 4、梯度下降求出损失
with tf.variable_scope("optimizer"):

# 5、计算准确率
with tf.variable_scope("acc"):
equal_list = tf.equal(tf.arg_max(y_true, 1), tf.arg_max(y_predict, 1))

# equal_list None个样本  [1, 0 ,1, 0, 0 ......]
accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32))

# 收集变量 单个数字值收集
tf.summary.scalar("losses", loss)
tf.summary.scalar("acc", accuracy)

# 高纬度变量收集
tf.summary.histogram("weight", weight)
tf.summary.histogram("biases", bias)

# 定义一个合并变量的op
merged = tf.summary.merge_all()

# 定义一个初始化变量的op
init_op = tf.global_variables_initializer()

# 创建一个saver
saver = tf.train.Saver()

# 开启会话去训练
with tf.Session() as sess:
# 初始化变量
sess.run(init_op)

# 建立events文件，然后写入
filewriter = tf.summary.FileWriter("./data", graph=sess.graph)

if FLAGS.is_train == 1:

# 迭代步数去训练，更新参数预测
for i in range(2000):

# 取出真实存在的特征值和目标值
mnist_x, mnist_y = mnist.train.next_batch(50)
# 运行train_op训练
sess.run(train_op, feed_dict={x:mnist_x,y_true:mnist_y})

# 写入每步训练的值
summary = sess.run(merged, feed_dict={x:mnist_x,y_true:mnist_y})

print("训练第%d步，准确率为：%f" % (i, sess.run(accuracy, feed_dict={x:mnist_x,y_true:mnist_y})))

# 保存模型
saver.save(sess, "./fc_model")
else:
# 加载模型
saver.restore(sess,"./fc_model")

# 如果是0，做出预测
for i in range(100):

#每次测试一张图片
x_test, y_test = mnist.test.next_batch(1)

print("第%d张图片，手写数字目标是：%d, 预测结果是：%d" % (i,
tf.arg_max(y_test, 1).eval(),
tf.arg_max(sess.run(y_predict, feed_dict={x: x_test, y_true: y_test}), 1)
))

return None

if __name__ == '__main__':
fullconnected()