深度学习:tensorflow入门:单层(全连接层)神经网络实现MNIST手写字体识别

代码中MNIST_data为真实MNIST数据集的路径

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data


FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_integer('is_train', 1, "指定程序预测还是训练")

def fullconnected():

    # 获取真实的数据
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)


    # 1、建立数据的占位符  x [None, 784] y_ture[None, 10]
    with tf.variable_scope("data"):
        x = tf.placeholder(tf.float32, [None, 784])

        y_true = tf.placeholder(tf.int32, [None, 10])

    # 2、建立一个全连接层的神经网络   w [784, 10]  b[10]
    with tf.variable_scope("fc"):
        # 随机初始化权重和偏置
        weight = tf.Variable(tf.random_normal([784, 10], mean=0.0, stddev=1.0), name="w")

        bias = tf.Variable(tf.constant(0.0, shape=[10]))

        # 预测None个样本的输出结果  matrix [None, 784] * [784, 10] + [10] = [None, 10]
        y_predict = tf.matmul(x, weight) + bias

    # 3、求出所有样本的损失,然后求平均值
    with tf.variable_scope("soft_cross"):

        # 求平均交叉熵损失
        loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_predict))

    # 4、梯度下降求出损失
    with tf.variable_scope("optimizer"):

        train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

    # 5、计算准确率
    with tf.variable_scope("acc"):
        equal_list = tf.equal(tf.arg_max(y_true, 1), tf.arg_max(y_predict, 1))

        # equal_list None个样本  [1, 0 ,1, 0, 0 ......]
        accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32))

    # 收集变量 单个数字值收集
    tf.summary.scalar("losses", loss)
    tf.summary.scalar("acc", accuracy)

    # 高纬度变量收集
    tf.summary.histogram("weight", weight)
    tf.summary.histogram("biases", bias)

    # 定义一个合并变量的op
    merged = tf.summary.merge_all()

    # 定义一个初始化变量的op
    init_op = tf.global_variables_initializer()

    # 创建一个saver
    saver = tf.train.Saver()

    # 开启会话去训练
    with tf.Session() as sess:
        # 初始化变量
        sess.run(init_op)

        # 建立events文件,然后写入
        filewriter = tf.summary.FileWriter("./data", graph=sess.graph)

        if FLAGS.is_train == 1:

            # 迭代步数去训练,更新参数预测
            for i in range(2000):

                # 取出真实存在的特征值和目标值
                mnist_x, mnist_y = mnist.train.next_batch(50)
                # 运行train_op训练
                sess.run(train_op, feed_dict={x:mnist_x,y_true:mnist_y})

                # 写入每步训练的值
                summary = sess.run(merged, feed_dict={x:mnist_x,y_true:mnist_y})

                filewriter.add_summary(summary, i)

                print("训练第%d步,准确率为:%f" % (i, sess.run(accuracy, feed_dict={x:mnist_x,y_true:mnist_y})))


            # 保存模型
            saver.save(sess, "./fc_model")
        else:
            # 加载模型
            saver.restore(sess,"./fc_model")

            # 如果是0,做出预测
            for i in range(100):

                #每次测试一张图片
                x_test, y_test = mnist.test.next_batch(1)

                print("第%d张图片,手写数字目标是:%d, 预测结果是:%d" % (i,
                                                       tf.arg_max(y_test, 1).eval(),
                                                       tf.arg_max(sess.run(y_predict, feed_dict={x: x_test, y_true: y_test}), 1)
                                                       ))

    return None

if __name__ == '__main__':
    fullconnected()
展开阅读全文

没有更多推荐了,返回首页