6-1 一些数学基础

本文详细介绍了向量范数、矩阵范数、Von Neumann定理、仿射集合、凸集及其性质,以及多元实函数的微分学,包括连锁法则、牛顿公式和函数的凸性。这些概念在信息技术领域的优化问题、机器学习算法和数据处理中扮演着关键角色。
摘要由CSDN通过智能技术生成

6-1 一些数学基础

1.向量范数

x = ( x 1 , x 2 , x 3 , . . . , x n ) x=(x_1,x_2,x_3,...,x_n) x=(x1,x2,x3,...,xn)

  1. l 1 l_1 l1范数: ∣ ∣ x ∣ ∣ 1 = ∑ i = 1 n ∣ x i ∣ ||x||_1=\sum_{i=1}^n|x_i| x1=i=1nxi
  2. l ∞ l_{\infty} l范数: ∣ ∣ x ∣ ∣ ∞ = m a x i = 1 , . . . , n ∣ x i ∣ ||x||_{\infty}=\underset{i=1,...,n}{max}|x_i| x=i=1,...,nmaxxi
  3. l p l_p lp范数: ∣ ∣ x ∣ ∣ 1 = ( ∑ i = 1 n ∣ x i ∣ p ) 1 p ||x||_1=(\sum_{i=1}^n|x_i|^p)^{\frac{1}{p}} x1=(i=1nxip)p1
  4. 特例 l 0 l_0 l0“范数”: ∣ ∣ x ∣ ∣ 0 = ( x 中 非 零 元 个 数 ) ||x||_0=(x中非零元个数) x0=x,显然它不是范数
  5. 椭球范数: A ∈ R n A\in R^n ARn是对称正定矩阵, ∣ ∣ x ∣ ∣ A = x T A x ||x||_A=\sqrt {x^TAx} xA=xTAx
    证明:(椭球范数是向量范数)
  • 显然 ∣ ∣ x ∣ ∣ A > θ ||x||_A>\theta xA>θ,若 x = θ x=\theta x=θ,则上式右端为0;若右端为0,由于A为实对称正定(可考虑二次型 f ( x ) = a 1 x 1 2 + a 2 x 2 2 + . . . + a n x n 2 f(x)=a_1x_1^2+a_2x_2^2+...+a_nx_n^2 f(x)=a1x12+a2x22+...+anxn2其中a为A的特征值)故 x = θ x=\theta x=θ.
  • a ∈ R , ∣ ∣ a x ∣ ∣ A = ( a x ) T A a x = a 2 x T A x = ∣ a ∣ x T A x = a ∣ ∣ x ∣ ∣ A a\in R,||ax||_A=\sqrt {(ax)^TAax}=\sqrt {a^2x^TAx}=|a|\sqrt {x^TAx}=a||x||_A aR,axA=(ax)TAax =a2xTAx =axTAx =axA
  • x , y ∈ R n , ∣ ∣ x + y ∣ ∣ A = ( x + y ) T A ( x + y ) = x T A x + y T A y ≤ x T A x + y T A y x,y\in R^n,||x+y||_A=\sqrt {(x+y)^TA(x+y)}=\sqrt {x^TAx+y^TAy}\leq \sqrt {x^TAx}+\sqrt {y^TAy} x,yRn,x+yA=(x+y)TA(x+y) =xTAx+yTAy xTAx +yTAy
  • 证毕
  1. 对偶范数: ∣ ∣ x ∣ ∣ ∗ = s u p { x T z ∣ ∣ ∣ z ∣ ∣ ≤ 1 } ||x||_*=sup\{x^Tz |\quad ||z||\leq 1\} x=sup{xTzz1}(验证这是一个向量范数)
    证明:
  • z = x ∣ ∣ x ∣ ∣ z=\frac{x}{||x||} z=xx,显然 ∣ ∣ x ∣ ∣ ∗ ≥ x T z ≥ 0 , x = 0 ⇒ ∣ ∣ x ∣ ∣ ∗ = 0 ; ∣ ∣ x ∣ ∣ ∗ = 0 ⇒ x = 0 ||x||_*\geq x^Tz\geq 0,x=0\Rightarrow||x||_*=0;||x||_*=0\Rightarrow x=0 xxTz0,x=0x=0;x=0x=0
  • 正齐次性显然
  • 三角不等式显然。
  • 证毕

2.矩阵范数

A ∈ R n × m A\in R^{n\times m} ARn×m

  1. 行和范数: ∣ ∣ A ∣ ∣ ∞ = m a x i = 1 , . . . , n ∑ j = 1 m ∣ a i j ∣ ||A||_\infty=\underset{i=1,...,n}{max}\sum_{j=1}^{m}|a_{ij}| A=i=1,...,nmaxj=1maij
  2. 列和范数: ∣ ∣ A ∣ ∣ ∞ = m a x j = 1 , . . . , m ∑ i = 1 n ∣ a i j ∣ ||A||_\infty=\underset{j=1,...,m}{max}\sum_{i=1}^{n}|a_{ij}| A=j=1,...,mmaxi=1naij
  3. 谱范数: ∣ ∣ A ∣ ∣ 2 = ρ ( A T A ) ||A||_2=\sqrt{\rho(A^TA)} A2=ρ(ATA)
  4. F F F范数:所有元素绝对值求和
  5. 相容范数:设 ∣ ∣ ⋅ ∣ ∣ p , ∣ ∣ ⋅ ∣ ∣ v ||\cdot||_p,||\cdot||_v p,v分别是两个不同的范数,若 ∣ ∣ A B ∣ ∣ ≤ ∣ ∣ A ∣ ∣ p ∣ ∣ B ∣ ∣ v ||AB||\leq||A||_p||B||_v ABApBv则称两范数相容。

3.Von Neumann定理

设相容矩阵范数 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| 满足 ∣ ∣ I ∣ ∣ = 1 ||I||=1 I=1,若矩阵 H ∈ L ( R n ) H\in L(R^n) HL(Rn)满足 ∣ ∣ H ∣ ∣ < 1 ||H||<1 H<1,则 ( I − H ) − 1 (I-H)^{-1} (IH)1存在,且 ∣ ∣ ( I − H ) − 1 ∣ ∣ < 1 1 − ∣ ∣ H ∣ ∣ ||(I-H)^{-1}||<\frac{1}{1-||H||} (IH)1<1H1
A ∈ L ( R n ) A\in L(R^n) AL(Rn)非奇异且 ∣ ∣ A − 1 ( B − A ) ∣ ∣ < 1 ||A^{-1}(B-A)||<1 A1(BA)<1 B B B也非奇异,且 ∣ ∣ B − 1 ∣ ∣ < ∣ ∣ A − 1 ∣ ∣ 1 − ∣ ∣ A − 1 ( B − A ) ∣ ∣ ||B^{-1}||<\frac{||A^{-1}||}{1-||A^{-1}(B-A)||} B1<1A1(BA)A1
第二个式子也常写作:
\qquad A A A非奇异且 ∣ ∣ A − 1 ∣ ∣ < α , ∣ ∣ A − B ∣ ∣ < β , α β < 1 ||A^{-1}||<\alpha,||A-B||<\beta,\alpha \beta<1 A1<α,AB<β,αβ<1 B B B也非奇异且 ∣ ∣ B − 1 ∣ ∣ < α 1 − α β ||B^{-1}||<\frac{\alpha}{1-\alpha\beta} B1<1αβα

4.仿射集合

如果通过集合 C ⊂ R n C\subset R^n CRn任意两个不同点的直线仍在集合中,则称集合C是仿射的。
例:(线性方程组的解集)设线性方程组的解集 C = { x ∣ A x = b } C=\{x|Ax=b\} C={xAx=b},则C是仿射集。
证明:设 x 1 , x 2 ∈ C x_1,x_2\in C x1,x2C,既 A x 1 = b , A x 2 = b Ax_1=b,Ax_2=b Ax1=b,Ax2=b,则 ∀ θ ∈ R \forall\theta\in R θR有:
A ( θ x 1 + ( 1 − θ ) x 2 ) = θ A x 1 + ( 1 − θ ) A x 2 = b A(\theta x_1+(1-\theta)x_2)=\theta Ax_1+(1-\theta)Ax_2=b A(θx1+(1θ)x2)=θAx1+(1θ)Ax2=b

  • 仿射包:称由集合 C ∈ R n C\in R^n CRn中点的所有放射组合组成的集合称为仿射包。
    仿射包是包含集合C的最小的妨设集合
  • 仿射维数:仿射包的维数

5.凸集

  • 凸集:如果C中任意两点间的线段仍在集合中,则称集合是凸集。
    注:仿射集是凸集合
  • 凸组合:我们称C中元素系数和为1的线性组合为C的凸组合 ( θ 1 x 1 + . . . + θ k x k , θ 1 + . . . + θ k = 1 ) (\theta_1x_1+...+\theta_kx_k,\theta_1+...+\theta_k=1) (θ1x1+...+θkxk,θ1+...+θk=1)
  • 凸包:所有凸组合的集合,记为 c o n v C convC convC
    注: c o n v C convC convC总是凸的,它是包含C的最小的凸集。
  • 保凸运算:伸缩、平移、投影、部分和

仿射集和凸集的几个例子:

  • 空集、单点集、全空间均是 R n R^n Rn的仿射子集(自然凸)
  • 直线仿射
  • 线段凸不仿射
  • 射线凸不仿射
  • R n R^n Rn空间的球凸

6.多元实函数与微商

  • 连续
    称函数 f : R n → R , 在 x 0 ∈ R f:R^n\to R,在x_0\in R f:RnR,x0R处连续,若 ∀ ϵ > 0 , ∃ δ = δ ( ϵ , x 0 ) > 0 \forall \epsilon>0,\exist\delta=\delta(\epsilon,x_0)>0 ϵ>0,δ=δ(ϵ,x0)>0使得 ∀ x ∈ S ( x 0 , δ ) ⊂ D , 有 f ( x ) ∈ S ( f ( x 0 ) , ϵ ) \forall x\in S(x_0,\delta)\sub D,有f(x)\in S(f(x_0),\epsilon) xS(x0,δ)D,f(x)S(f(x0),ϵ).若 f f f在开集 D D D的每点都连续,则称 f f f在开集D的每点都连续。
  • G可微
    D ∈ R n D\in R^n DRn为开集,称映像 F : D → R m F:D\to R ^m F:DRm于内点 x ∈ R n x\in R^n xRn G G G可微,若存在线性算子 A ∈ L ( R n , R m ) A\in L(R^n,R^m) AL(Rn,Rm)使得对任何方向 h ∈ R n h\in R^n hRn以及 x + t h ∈ D x+th\in D x+thD,有 lim ⁡ t → 0 1 t ( F ( x + t h ) − F ( x ) ) = A h \lim_{t\to0}\frac{1}{t}(F(x+th)-F(x))=Ah t0limt1(F(x+th)F(x))=Ah,此时称 A A A F F F x x x处的 G − G- G微商。
    上式还有另一等价形式:
    lim ⁡ t → 0 1 t ∣ ∣ F ( x + t h ) − F ( x ) − t A h ∣ ∣ = 0 \lim_{t\rightarrow0}\frac{1}{t}||F(x+th)-F(x)-tAh||=0 t0limt1F(x+th)F(x)tAh=0
  • F可微
    \qquad D ⊂ R n D\subset\mathbb R^n DRn为开集,称映像 F : D → R n F:D\to\mathbb R^n F:DRn于内点 x ∈ R n x\in\mathbb R^n xRn F − F- F可微,若存在线性算子 A ∈ L ( R n , R m ) A\in L(\mathbb R^n,\mathbb R^m) AL(Rn,Rm)使得 lim ⁡ h → 0 1 ∥ h ∥ ∥ F ( x + h ) − F ( x ) − A h ∥ = 0 \lim_{h\to 0}\frac{1}{\Vert h\Vert}\Vert F(x+h)-F(x)-Ah\Vert=0 h0limh1F(x+h)F(x)Ah=0此时称 A A A x x x F − F- F可微。
  • 连续即可微
    \qquad 映像 F F F如前所述。若 F F F x x x F − F- F可微,则其在该点连续,并且存在 δ > 0 , c > 0 \delta>0,c>0 δ>0,c>0,使得 S ˉ ( x , δ ) ∈ D \bar S(x,\delta)\in D Sˉ(x,δ)D ∥ F ( x + h ) − F ( x ) ∥ ≤ c ∥ h ∥ , w h e n ∥ h ∥ ≤ δ . \Vert F(x+h)-F(x)\Vert\leq c\Vert h\Vert,\quad when \Vert h\Vert\leq\delta. F(x+h)F(x)ch,whenhδ.
    证明:由于x为内点,故存在 δ 1 > 0 \delta_1>0 δ1>0使得当 ∣ ∣ h ∣ ∣ ≤ δ 1 ||h||\leq \delta_1 hδ1 x + h ∈ D x+h\in D x+hD故存在正数 δ ≤ δ 1 \delta\leq\delta_1 δδ1使得 ∣ ∣ F ( x + h ) − F ( x ) − F ′ ( x ) h ∣ ∣ ≤ ϵ ∣ ∣ h ∣ ∣ , ∣ ∣ h ∣ ∣ ≤ δ ||F(x+h)-F(x)-F'(x)h||\leq\epsilon||h||,||h||\leq\delta F(x+h)F(x)F(x)hϵh,hδ证毕。

7.连锁法则

  • 映像的连锁法则
    \qquad 设映像 F : D F → R m F:D_F\to \mathbb R^m F:DFRm x ∈ R n x\in \mathbb R^n xRn G − G- G可微, G : D G → R p G:D_G\to \mathbb R^p G:DGRp F ( x ) ∈ R m F(x)\in \mathbb R^m F(x)Rm F − F- F可微,则 H = G ⋅ F H=G\cdot F H=GF x x x G − G- G可微,且 H ′ ( x ) = G ′ ( F ( x ) ) F ′ ( x ) . H'(x)=G'(F(x))F'(x). H(x)=G(F(x))F(x).此外,若 F F F x x x F − F- F可微,则 H H H亦然。
    推论:若映像 F : D F → R m F:D_F\to \mathbb R^m F:DFRm x ∈ R n x\in \mathbb R^n xRn处弱(强)可微, A ∈ L ( R m , R p ) A\in L(\mathbb R^m,\mathbb R^p) AL(Rm,Rp),则 H = A F H=AF H=AF x x x处弱(强)可微且 H ′ ( x ) = A F ′ ( x ) . H'(x)=AF'(x). H(x)=AF(x).

  • 中值公式
    \qquad 若映像 F : D ⊂ R n → R m F:D\subset\mathbb R^n\to \mathbb R^m F:DRnRm于线段 [ x ˉ , x ˉ + Δ x ] ⊂ D [\bar x,\bar x+\Delta x]\subset D [xˉ,xˉ+Δx]D G − G- G可微,则 ∥ F ( x ˉ + Δ x ) − F ( x ˉ ) ∥ ≤ sup ⁡ 0 < ξ < 1 ∥ F ′ ( x ˉ + ξ Δ x ) ∥ ∥ Δ x ∥ \Vert F(\bar x+\Delta x)-F(\bar x)\Vert\leq \sup_{0<\xi<1}\Vert F'(\bar x+\xi\Delta x)\Vert\Vert \Delta x\Vert F(xˉ+Δx)F(xˉ)0<ξ<1supF(xˉ+ξΔx)Δx
    推论1:若映像 F : D ⊂ R n → R m F:D\subset\mathbb R^n\to \mathbb R^m F:DRnRm于凸集 D 0 ⊂ D D_0\subset D D0D G − G- G可微,则对 ∀ x , y , z ∈ D 0 \forall x,y,z\in D_0 x,y,zD0 ∥ F ( y ) − F ( x ) − F ′ ( z ) ( y − x ) ∥ ≤ sup ⁡ 0 < ξ < 1 ∥ F ′ ( x + ξ ( y − x ) − F ′ ( z ) ) ∥ ∥ y − x ∥ \Vert F(y)-F(x)-F'(z)(y-x)\Vert\leq \sup_{0<\xi<1}\Vert F'( x+\xi(y-x)-F'(z))\Vert\Vert y-x\Vert F(y)F(x)F(z)(yx)0<ξ<1supF(x+ξ(yx)F(z))yx
    推论2:连续 G − G- G可微即 F − F- F可微.

8.牛莱公式

\qquad 若映像 F : D ⊂ R n → R m F:D\subset\mathbb R^n\to \mathbb R^m F:DRnRm于凸集 D 0 ⊂ D D_0\subset D D0D G − G- G可微,且 F ′ ( x ) F'(x) F(x) D D D L i p s c h i t z Lipschitz Lipschitz连续 ( X ) (\mathcal X) (X),则对 ∀ x ˉ , x ˉ + Δ x ∈ D 0 \forall \bar x,\bar x+\Delta x\in D_0 xˉ,xˉ+ΔxD0 ∥ F ( x ˉ + Δ x ) − F ( x ˉ ) − F ′ ( x ˉ Δ x ) ∥ ≤ 1 2 X ∥ Δ x ∥ 2 . \Vert F(\bar x+\Delta x)-F(\bar x)-F'(\bar x\Delta x)\Vert\leq\frac{1}{2}\mathcal X\Vert \Delta x\Vert^2. F(xˉ+Δx)F(xˉ)F(xˉΔx)21XΔx2.

9.函数的凸、严格凸、一致凸

  • 凸:若定义在凸集C上的泛函 f f f满足:存在 α ∈ ( 0 , 1 ) \alpha\in(0,1) α0,1使得 f ( α x 1 + ( 1 − α ) x 2 ) ≤ α f ( x 1 ) + ( 1 − α ) f ( x 2 ) (1) f(\alpha x_1+(1-\alpha)x_2)\leq \alpha f(x_1)+(1-\alpha)f(x_2)\tag1 f(αx1+(1α)x2)αf(x1)+(1α)f(x2)(1)则称泛函f是凸的,其中 x 1 , x 2 ∈ C x_1,x_2\in C x1,x2C.
       ⟺    \iff f f f C C C G G G可微,则 f f f凸的充要条件为 f ′ ( x ) ( y − x ) ≤ f ( y ) − f ( x ) f'(x)(y-x)\leq f(y)-f(x) f(x)(yx)f(y)f(x)
  • 严格凸:若 ( 1 ) (1) (1)不等号严格成立则称严格凸。
       ⟺    \iff f f f C C C G G G可微,则 f f f严格凸的充要条件为 f ′ ( x ) ( y − x ) < f ( y ) − f ( x ) f'(x)(y-x)< f(y)-f(x) f(x)(yx)<f(y)f(x)
  • 一致(强)凸:若存在常数 c > 0 c>0 c>0使得 α f ( x 1 ) + ( 1 − α ) f ( x 2 ) ≥ f ( α x 1 + ( 1 − α ) x 2 ) + c α ( 1 − α ) ∣ ∣ x 1 − x 2 ∣ ∣ 2 (2) \alpha f(x_1)+(1-\alpha)f(x_2)\geq f(\alpha x_1+(1-\alpha)x_2)+c\alpha(1-\alpha)||x_1-x_2||^2 \tag2 αf(x1)+(1α)f(x2)f(αx1+(1α)x2)+cα(1α)x1x22(2)则称一致凸。    ⟺    \iff f f f C C C G G G可微,则 f f f一致凸的充要条件为 f ′ ( x ) ( y − x ) + c ∣ ∣ y − x ∣ ∣ 2 ≤ f ( y ) − f ( x ) f'(x)(y-x)+c||y-x||^2\leq f(y)-f(x) f(x)(yx)+cyx2f(y)f(x)
    显然,一致凸    ⟹    \implies 严格凸    ⟹    \implies
    例:证明 f ( x ) = x 4 f(x)=x^4 f(x)=x4严格凸但不存在任何 c > 0 c>0 c>0使得一致凸。
    证: f ( α x + ( 1 − α ) y ) = ( α x + ( 1 − α ) y ) 4 < α x 4 + ( 1 − α ) y 4 f(\alpha x+(1-\alpha)y)=(\alpha x+(1-\alpha)y)^4<\alpha x^4+(1-\alpha)y^4 f(αx+(1α)y)=(αx+(1α)y)4<αx4+(1α)y4
    又因为 ∀ c > 0 \forall c>0 c>0都有 ∑ k = 0 4 C 4 k α 4 − k x 4 − k ( 1 − α ) k y k < c α ( 1 − α ) ∣ ∣ x − y ∣ ∣ 2 \sum_{k=0}^4C^k_4\alpha^{4-k}x^{4-k}(1-\alpha)^ky^k<c\alpha(1-\alpha)||x-y||^2 k=04C4kα4kx4k(1α)kyk<cα(1α)xy2故不存在任何 c > 0 c>0 c>0使得(2)式成立。

10. α − \alpha- α下水平集

函数 f : R n → R f:R^n\to R f:RnR α − \alpha- α下水平集定义为 C α = { x ∈ d o m f ∣ f ( x ) < α } C_\alpha=\{x\in domf|f(x)<\alpha\} Cα={xdomff(x)<α}.
例:对于任意 α \alpha α,凸函数的下水平集仍为凸集
证明:设 x , y ∈ C α x,y\in C_{\alpha} x,yCα,则 f ( x ) , f ( y ) ≤ α f(x),f(y)\leq \alpha f(x),f(y)α,于是 f ( θ x + ( 1 − θ ) y ) ≤ θ f ( x ) + ( 1 − θ ) f ( y ) ≤ α f(\theta x+(1-\theta)y)\leq\theta f(x)+(1-\theta)f(y)\leq \alpha f(θx+(1θ)y)θf(x)+(1θ)f(y)α
证毕。

11.次梯度

\qquad f ( x ) , x ∈ X f(x),x\in X f(x)xX为实值函数,称 g g g f f f x x x点处的次梯度,若 ∀ y , s . t . g T ( x − y ) ≤ f ( y ) − f ( x ) \forall y,\quad s.t.\quad g^T(x-y)\leq f(y)-f(x) y,s.t.gT(xy)f(y)f(x) x x x点处的所有次梯度组成的集合称为该点处的次微分,记作 ∂ f ( x ) \partial f(x) f(x)
\qquad f f f为定义于凸集 X X X上的实值函数。若 ∀ x ∈ X , ∂ f ( x ) ≠ ∅ \forall x\in X,\partial f(x)\neq \empty xX,f(x)=,则 f f f凸。反之,若 f f f凸,则对任意 x ∈ i n t ( X ) , ∂ f ( x ) ≠ ∅ . x\in int(X),\partial f(x)\neq\empty. xint(X),f(x)=.

关于凸、严格凸、一致凸的相关内容:
在这里插入图片描述
例:
在这里插入图片描述
证明:由于 ∇ 2 f ( x ∗ ) \nabla^2f(x^*) 2f(x)正定,故它的特征值 λ 1 , . . . , λ k > 0 \lambda_1,...,\lambda_k>0 λ1,...,λk>0,于是 m a x λ ∣ ∣ d ∣ ∣ 2 2 ≤ d T ∇ f ( x ∗ ) d = λ 2 d 1 2 + . . . + λ k d k 2 ≥ m i n ( λ ) ∣ ∣ d ∣ ∣ 2 2 max\lambda||d||_2^2\leq d^T\nabla f(x^*)d=\lambda^2d_1^2+...+\lambda_kd_k^2 \geq min(\lambda)|| d||_2^2 maxλd22dTf(x)d=λ2d12+...+λkdk2min(λ)d22第一、二式得证。同理由梯度的定义第三式得证。

12.Lipschitz光滑

Lipschitz连续条件 ∥ f ( y ) − f ( x ) ∥ ≤ L ( y − x ) , ∀ x , y \Vert f(y)-f(x)\Vert\leq L(y-x),\forall x,y f(y)f(x)L(yx),x,y
上式为条件 [ 0 ] [0] [0]
在这里插入图片描述

注: f f f R n R^n Rn上的L-光滑的凸函数时,对 ∀ x , y , α ∈ [ 0 , 1 ] , [ 0 ] − [ 7 ] \forall x,y,\alpha\in[0,1],[0]-[7] x,y,α[0,1][0][7]等价。

13.Jensen不等式及其扩展

在这里插入图片描述
在这里插入图片描述
利用Jensen不等式证明 H o . . l d e r H\overset{..}{o}lder Ho..lder不等式:对 p > 1 , 1 p + 1 q = 1 , x , y ∈ R n p>1,\frac{1}{p}+\frac{1}{q}=1,x,y\in R^n p>1,p1+q1=1,x,yRn ∥ x y T ∥ 1 ≤ ∥ x ∥ p ∥ y ∥ q \Vert xy^T\Vert_1\leq\Vert x\Vert_p\Vert y\Vert_q xyT1xpyq.
证明: − l o g x -logx logx的凸性以及 J e n s e n Jensen Jensen不等式我们有 − l o g ( θ a + ( 1 − θ ) b ) ≤ − θ l o g a − ( 1 − θ ) l o g b -log(\theta a+(1-\theta)b)\leq-\theta loga-(1-\theta)logb log(θa+(1θ)b)θloga(1θ)logb
而由基本不等式可知 a θ b ( 1 − θ ) ≤ θ a + ( 1 − θ ) b a^\theta b^{(1-\theta)}\leq \theta a+(1-\theta)b aθb(1θ)θa+(1θ)b其中 a , b > 0 , θ ∈ ( 0 , 1 ) a,b>0,\theta\in(0,1) a,b>0,θ(0,1).令 a = ∣ x i ∣ p ∑ j = 1 n ∣ x j ∣ p , b = ∣ y i ∣ p ∑ j = 1 n ∣ y j ∣ p , θ = 1 p , a=\frac{|x_i|^p}{\sum_{j=1}^{n}|x_j|^p},b=\frac{|y_i|^p}{\sum_{j=1}^{n}|y_j|^p},\theta=\frac{1}{p}, a=j=1nxjpxip,b=j=1nyjpyip,θ=p1,可以得到如下不等式 a 1 p b 1 q ≤ = ∣ x i ∣ p p ∑ j = 1 n ∣ x j ∣ p + ∣ y i ∣ p q ∑ j = 1 n ∣ y j ∣ p a^{\frac{1}{p}}b^{\frac{1}{q}}\leq=\frac{|x_i|^p}{p\sum_{j=1}^{n}|x_j|^p}+\frac{|y_i|^p}{q\sum_{j=1}^{n}|y_j|^p} ap1bq1=pj=1nxjpxip+qj=1nyjpyip a , b a,b a,b的定义两端对 i i i求和即可得 H o . . l d e r H\overset{..}{o}lder Ho..lder不等式。

14.保凸运算

  • 非负加权求和保凸:若 f f f凸则 ∀ α > 0 , s . t . a f \forall\alpha>0,s.t.af α>0,s.t.af凸(可由凸函数定义证得),若 f 1 , f 2 f_1,f_2 f1,f2凸则 f 1 + f 2 f_1+f_2 f1+f2凸(可由定义证得)故,若 f 1 , f 2 , . . . f n f_1,f_2,...f_n f1,f2,...fn凸则任意 w 1 , w 2 , . . . w n > 0 w_1,w_2,...w_n>0 w1,w2,...wn>0 f = w 1 f 1 + w 2 f 2 + . . . + w n f n f=w_1f_1+w_2f_2+...+w_nf_n f=w1f1+w2f2+...+wnfn
  • 无限项非负加权求和及积分:由第一条可知凸函数无限项非负加权求和仍为凸函数,故若 ∫ A f ( x ) d x \int_\mathcal Af(x)dx Af(x)dx存在,则积分关于 x x x凸(定积分的定义及求解:分割、近似、求和、取极限)
  • 凸函数的复合仿射变换仍凸
  • 凸函数的逐点最大函数仍为凸函数: f 1 , f 2 f_1,f_2 f1,f2均为凸函数,则 f ( x ) = m a x ( f 1 ( x ) , f 2 ( x ) ) , d o m f = d o m f 1 ∩ d o m f 2 f(x)=max(f_1(x),f_2(x)),domf=domf_1\cap domf_2 f(x)=max(f1(x),f2(x))domf=domf1domf2仍为凸函数。
    证明: f ( θ x + ( 1 − θ ) y ) = m a x ( f ( θ x + ( 1 − θ ) y ) ≤ m a x ( θ f 1 ( x ) + ( 1 − θ ) f 1 ( y ) , θ f 2 ( x ) + ( 1 − θ ) f 2 ( y ) ) = θ m a x ( f 1 ( x ) , f 2 ( x ) ) + ( 1 − θ ) m a x ( f 1 ( y ) , f 2 ( y ) ) = θ f ( x ) + ( 1 − θ ) f ( y ) f(\theta x+(1-\theta)y)=max(f(\theta x+(1-\theta)y) \leq max(\theta f_1(x)+(1-\theta)f_1(y),\theta f_2(x)+(1-\theta)f_2(y)) =\theta max(f_1(x),f_2(x))+(1-\theta)max(f_1(y),f_2(y))=\theta f(x)+(1-\theta)f(y) f(θx+(1θ)y)=max(f(θx+(1θ)y)max(θf1(x)+(1θ)f1(y),θf2(x)+(1θ)f2(y))=θmax(f1(x),f2(x))+(1θ)max(f1(y),f2(y))=θf(x)+(1θ)f(y)
    在这里插入图片描述

14. 单调性

在这里插入图片描述
在这里插入图片描述

15.凸性与单调性

在这里插入图片描述
上式通常写作: ∇ 2 f ≥ γ I \nabla^2f\geq\gamma I 2fγI,凸和严格凸对应着 ∇ 2 f ≥ 0 , ∇ 2 f > 0 \nabla^2f\geq0,\nabla^2f>0 2f0,2f>0
举例:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

16.拟凸函数

函数 f : R n → R f:R^n\to R f:RnR称为拟凸函数(单峰函数),若其定义域及所有下水平集 S α = { x ∈ d o m f ∣ f ( x ) ≤ α } , α ∈ R S_\alpha=\{x\in domf|f(x)\leq \alpha\},\alpha\in R Sα={xdomff(x)α},αR都是凸集。若函数拟凹则 − f -f f一定拟凸,(拟凹)及所有上水平及均凸。
注:拟凸与凸无任何关系,拟凸函数未必凸,甚至可能不连续。
拟线性函数:既拟凸又拟凹

17.拟凸、伪凸、凸

在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值