2-7 实变函数之经典习题

2-7 实变函数之经典习题

1.点集

  1. E 1 E_1 E1是[0,1]中的有理数全体,求 E 1 E_1 E1 R 1 R^1 R1中的 E 1 ′ E_1' E1(导集:聚点组成的集合), E 1 o \overset{o}{E_1} E1o(开核:内点组成的集合), E 1 − \overset{-}{E_1} E1(闭包).
    \quad 解: E 1 ′ = [ 0 , 1 ] E_1'=[0,1] E1=[0,1]; E 1 o = ∅ \overset{o}{E_1}=\empty E1o= E 1 − = [ 0 , 1 ] \overset{-}{E_1}=[0,1] E1=[0,1]
    注: 聚点P:P的任意邻域与E的交成无限集。
    \quad\quad 内点P:存在P的邻域是E的子集(显然有理数的任意邻域都含无理数)
    \quad\quad 闭包:导集+孤立点。
  2. E 2 = { ( x , y ) ∣ x 2 + y 2 < 1 } E_2=\{(x,y)|x^2+y^2<1\} E2={(x,y)x2+y2<1},求 E 2 E_2 E2 R 2 R^2 R2中的 E 2 ′ E_2' E2, E 2 o \overset{o}{E_2} E2o, E 2 − \overset{-}{E_2} E2.
    \quad 解: E 2 ′ = { ( x , y ) ∣ x 2 + y 2 ≤ 1 } E_2'=\{(x,y)|x^2+y^2\leq1\} E2={(x,y)x2+y21};
    E 2 o = { ( x , y ) ∣ x 2 + y 2 < 1 } \overset{o}{E_2}=\{(x,y)|x^2+y^2<1\} E2o={(x,y)x2+y2<1};
    E 2 − = { ( x , y ) ∣ x 2 + y 2 ≤ 1 } \overset{-}{E_2}=\{(x,y)|x^2+y^2\leq1\} E2={(x,y)x2+y21}

2.测度论

  1. E可测的充要条件是 ∀ ϵ > 0 , ∃ \forall\epsilon>0,\exist ϵ>0,开集G,s.t. E ⊂ G E\subset G EG,且
    m ∗ ( G − E ) < ϵ m^*(G-E)<\epsilon m(GE)<ϵ
    \quad 证:    ⟹    \implies m E < + ∞ , 则 ∃ 开 集 { I i } , i = 1 , . . . . mE<+\infty,则\exist开集\{I_i\},i=1,.... mE<+,{Ii},i=1,....使得
    ⋃ ∞ i = 1 I i ⊃ E \underset{i=1}{\overset{\infty}{\bigcup}}I_i\supset E i=1IiE ∑ i = 1 ∞ ∣ I i ∣ < m ∗ E + ϵ \sum^{\infty}_{i=1}|I_i|<m^*E+\epsilon i=1Ii<mE+ϵ,令 G = ⋃ ∞ i = 1 I i G=\underset{i=1}{\overset{\infty}{\bigcup}}I_i G=i=1Ii,则G为开集。且 G ⊃ E G\supset E GE,于是
    m ∗ E < m ∗ G < ∑ i = 1 ∞ m I i + ϵ m^*E<m^*G<\sum^{\infty}_{i=1}mI_i+\epsilon mE<mG<i=1mIi+ϵ得证
       ⟸    \impliedby ∀ ϵ > 0 , ∃ \forall\epsilon>0,\exist ϵ>0,开集G,s.t. E ⊂ G , m ∗ ( G − E ) < ϵ E\subset G,m^*(G-E)<\epsilon EG,m(GE)<ϵ ϵ = 1 n \epsilon=\frac{1}{n} ϵ=n1, ∃ 开 集 G n ⊃ E , 令 G = ⋂ G n \exist开集G_n\supset E,令G=\bigcap G_n GnE,G=Gn,则G是 G δ G_\delta Gδ型集,是开集,且 G ⊃ E , m ∗ ( G − E ) < m ∗ ( G n − E ) < 1 n G\supset E,m^*(G-E)<m^*(G_n-E)<\frac{1}{n} GE,m(GE)<mGnE<n1于是 m ∗ ( G n − E ) = 0 m^*(G_n-E)=0 mGnE)=0,从而G-E可测,又因为G是开集,所以E可测。

3.可测函数

  1. m E [ f ≠ g ] = 0 mE[f\neq g]=0 mE[f=g]=0,若 f f f可测则 g g g可测。
    \quad 解: E 1 = E [ f ≠ g ] , E 2 = [ f = g ] E_1=E[f\neq g],E_2=[f=g] E1=E[f=g],E2=[f=g],则,由题意知, m E 1 = 0 , mE_1=0, mE1=0,故g在 E 1 E_1 E1上可测。又因为f在E上可测,则f在 E 2 E_2 E2上可测,故g在 E 2 E_2 E2上可测,所以g在E上可测。

4. 积分论

  1. P 0 P_0 P0为[0,1]上的cantor集,在 P 0 P_0 P0上定义函数 f ( x ) = 0 f(x)=0 f(x)=0,在余集长为 1 3 n \frac{1}{3^n} 3n1的构成区间上定义为 f ( x ) = n f(x)=n f(x)=n,证明: f f f在[0,1]上L可积,并求出积分值。
    \quad 证: 积分值有限则可积,在cantor集上函数的定义为0,于是L积分为0.假设函数在[0,1]可积,那么 ∫ [ 0 , 1 ] f ( x ) d x < ∞ \int_{[0,1]}f(x)dx<\infty [0,1]f(x)dx<,由题意 ∫ [ 0 , 1 ] f ( x ) d x = ∫ P 0 f ( x ) d x + ∫ P 0 c f ( x ) d x = 0 + ∫ P 0 c f ( x ) d x \int_{[0,1]}f(x)dx=\int_{P_0}f(x)dx+\int_{{P_0}^c}f(x)dx=0+\int_{{P_0}^c}f(x)dx [0,1]f(x)dx=P0f(x)dx+P0cf(x)dx=0+P0cf(x)dx
    于是只需求 ∫ P 0 c f ( x ) d x \int_{{P_0}^c}f(x)dx P0cf(x)dx
    \quad \quad ∫ P 0 c f ( x ) d x = ∫ ⋃ ∞ i = 1 E n f ( x ) d x = ∑ i = 1 + ∞ ∫ E n f ( x ) d x = ∑ i = 1 + ∞ n ∗ m ( E n ) = ∑ i = 1 + ∞ n ∗ 2 n − 1 3 n = 3 < ∞ \int_{{P_0}^c}f(x)dx=\int_{\underset{i=1}{\overset{\infty}{\bigcup}}E_n}f(x)dx=\sum^{+\infty}_{i=1}\int_{E_n}f(x)dx=\sum^{+\infty}_{i=1}n*m(E_n)=\sum^{+\infty}_{i=1}n*\frac{2^{n-1}}{3^n}=3<\infty P0cf(x)dx=i=1Enf(x)dx=i=1+Enf(x)dx=i=1+nm(En)=i=1+n3n2n1=3<
  2. ∑ i = 1 ∞ ( R ) ∫ − 1 1 x 2 ( 1 + x 2 ) n d x \sum^{\infty}_{i=1}(R)\int^{1}_{-1}\frac{x^2}{(1+x^2)^n}dx i=1(R)11(1+x2)nx2dx
    \quad 解: f n ( x ) = x 2 ( 1 + x 2 ) n f_n(x)=\frac{x^2}{(1+x^2)^n} fn(x)=(1+x2)nx2,则 f f f在[-1,1]上为非负连续函数,于是 f f f在[-1,1]上为非负可测,由逐项积分定理
    ∑ i = 1 ∞ ( R ) ∫ − 1 1 x 2 ( 1 + x 2 ) n d x = ∑ i = 1 ∞ ( L ) ∫ [ − 1 , 1 ] f n ( x ) d x = ( L ) ∫ [ − 1 , 1 ] ∑ i = 1 ∞ f n ( x ) d x = ( L ) ∫ [ − 1 , 1 ] 1 d x = 2 \sum^{\infty}_{i=1}(R)\int^{1}_{-1}\frac{x^2}{(1+x^2)^n}dx=\sum^{\infty}_{i=1}(L)\int_{[-1,1]}f_n(x)dx=(L)\int_{[-1,1]}\sum^{\infty}_{i=1}f_n(x)dx=(L)\int_{[-1,1]}1dx=2 i=1(R)11(1+x2)nx2dx=i=1(L)[1,1]fn(x)dx=(L)[1,1]i=1fn(x)dx=(L)[1,1]1dx=2
  3. 证明:若 f ( x ) f(x) f(x)在[a,b]上绝对连续, f ′ ( x ) ≥ 0 f'(x)\geq0 f(x)0,a.e.于[a,b],则 f ( x ) f(x) f(x)为增函数。
    \quad 证: ∀ x 1 , x 2 ∈ [ a , b ] , \forall x_1,x_2\in[a,b], x1,x2[a,b],不妨设 x 1 < x 2 x_1<x_2 x1<x2由于 f f f绝对连续,于是 f ( x ) f(x) f(x)可表示为 f ( x ) = f ( a ) + ∫ a x f ( t ) d t f(x)=f(a)+\int^{x}_{a}f(t)dt f(x)=f(a)+axf(t)dt,

    \quad\quad f ( x 1 ) = f ( a ) + ∫ a x 1 f ′ ( t ) d t f(x_1)=f(a)+\int^{x_1}_{a}f'(t)dt f(x1)=f(a)+ax1f(t)dt,
    \quad\quad f ( x 2 ) = f ( a ) + ∫ a x 2 f ′ ( t ) d t f(x_2)=f(a)+\int^{x_2}_{a}f'(t)dt f(x2)=f(a)+ax2f(t)dt.
    \quad\quad f ( x 2 ) − f ( x 1 ) = ∫ x 1 x 2 f ′ ( t ) d x f(x_2)-f(x_1)=\int^{x_2}_{x_1}f'(t)dx f(x2)f(x1)=x1x2f(t)dx
    由于 f ′ ( x ) ≥ 0 f'(x)\geq0 f(x)0,a.e.于[a,b],故 f ( x 2 ) − f ( x 1 ) ≥ 0 , f f(x_2)-f(x_1)\geq0,f f(x2)f(x1)0,f在[a,b]上是增函数。
  4. { f n ( x ) } \{f_n(x)\} {fn(x)}是[a,b]上一列绝对连续的增函数,若级数
    f ( x ) = ∑ i = 1 ∞ f n ( x ) f(x)=\sum^{\infty}_{i=1}f_n(x) f(x)=i=1fn(x)在[a,b]上处处收敛,证明: f ( x ) f(x) f(x)是[a,b]上的绝对连续函数。
    \quad 证: 对于 ∀ n > 0 \forall n>0 n>0,由于 f n ( x ) f_n(x) fn(x)在[a,b]上绝对连续,于是有
    f n ( x ) = f n ( a ) + ∫ a x f n ′ ( t ) d t f_n(x)=f_n(a)+\int^{x}_{a}f'_n(t)dt fn(x)=fn(a)+axfn(t)dt又因为 f n ( x ) f_n(x) fn(x)处处收敛,于是 ∑ i = 1 ∞ f n ( a ) = f ( a ) \sum^{\infty}_{i=1}f_n(a)=f(a) i=1fn(a)=f(a),又因为 f ′ ( x ) ≥ 0 f'(x)\geq0 f(x)0且绝对连续,从而 ∑ i = 1 ∞ ∫ a x f n ( t ) d t = ∫ a x ∑ i = 1 ∞ f n ( t ) d t \sum^{\infty}_{i=1}\int^{x}_{a}f_n(t)dt=\int^{x}_{a}\sum^{\infty}_{i=1}f_n(t)dt i=1axfn(t)dt=axi=1fn(t)dt
    所以有
    f ( x ) = ∑ i = 1 ∞ f n ( x ) = f n ( x ) f(x)=\sum^{\infty}_{i=1}f_n(x)=f_n(x) f(x)=i=1fn(x)=fn(x)
    = ∑ i = 1 ∞ f n ( a ) + ∑ i = 1 ∞ ∫ a x f n ′ ( t ) d t \quad\quad=\sum^{\infty}_{i=1}f_n(a)+\sum^{\infty}_{i=1}\int^{x}_{a}f'_n(t)dt =i=1fn(a)+i=1axfn(t)dt
    = f ( a ) + ∫ a x f ( t ) d t \quad\quad=f(a)+\int^{x}_{a}f(t)dt =f(a)+axf(t)dt
    f ( x ) f(x) f(x)为[a,b]上的绝对连续函数。

往期:

2-1 实变函数之集合论
2-2 实变函数之集合论(点集)
2-3 实变函数之测度论
2-4 实变函数之可测函数
2-5 实变函数之积分论
2-6 实变函数之微分与不定积分

  • 5
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值