快速排序
时间复杂度分析:
快速排序的一次划分算法从两头交替搜索,直到low和high重合,因此其时间复杂度是O(n),而整个快速排序算法的实际复杂度与划分的趟数有关。
理想情况:每次划分所选择的关键字key,恰好将当前序列几乎等分,经过 log 2 n \log_2^n log2n趟划分,便可得到长度为1的子表。这样,整个算法的时间复杂度为 O ( n log 2 n ) O(n\log_2^n) O(nlog2n)。
最坏情况:每次所选的中间数是当前序列中的最大或最小元素,这使得每次划分所得的子表中一个为空表,另一子表的长度为原表的长度-1。这样,长度为n的数据表的快速排序需要经过n趟划分,使得整个排序算法的时间复杂度为 O ( n 2 ) O(n^2) O(n2)。
代码如下:
#include<stdio.h>
#include<stdlib.h>
#define N 1000000
int a[N];
int Partition(int b[], int low, int high)
{
int key;//划分点
key = b[low];
while(low < high)
{
while(low<high && b[high]>=key) //从右边开始向左边遍历,找到小于key的数
high--;
b[low]=b[high];//交换位置:将小于key的这个数换到low对应的位置
while(low<high && b[low]<=key)//从左边向右边遍历,找到大于kay的数
low++;
b[high]=b[low];//交换位置:将大于key的这个数换到high对应的位置
}
b[low] = key;//low=high时,把将关键字放入该位置
return low;//返回该划分点
}
void QuickSort(int c[], int low, int high)
{
int pivot;
if(low < high)
{
pivot = Partition(c,low,high);
QuickSort(c,low,pivot-1);
QuickSort(c,pivot+1,high);
}
}
int main()
{
int i,n;
while(~scanf("%d",&n))
{
for(i=0;i<n;i++)
{
scanf("%d",&a[i]);
}
QuickSort(a,0,n-1);
printf("快速排序后:\n");
for(i=0;i<n;i++)
{
printf("%d%c",a[i],i==n-1?'\n':' ');
}
}
return 0;
}