PyTorch 修炼篇(一) : CIFAR-10 分类模型

学习参考:pytorch-cifar

import os
import time
import torch
import torch.nn as nn  # 神经网络工具箱
import torch.nn.functional as F  # functional中的函数是一个确定的不变的运算公式,输入数据产生输出就ok。
import numpy as np
from torch.autograd import Variable
from torch.utils.data.dataloader import DataLoader
import torchvision.datasets as datasets  # 数据模块
import torchvision.transforms as transforms  # 数据变换模块
import matplotlib.pyplot as plt

CIFAR-10数据加载和处理

我们使用CIFAR10数据集。CIFAR10数据集包含60,000张32x32的彩色图片,10个类别,每个类包含6,000张。其中50,000张图片作为训练集,10000张作为验证集。这次我们只对其中的猫和狗两类进行预测。

BATCH_SIZE = 128

# 由于torchvision的datasets输入[0,1]的PILmage,所以先归一化为[-1,1]的Tensor
transform = transforms.Compose(
    [transforms.ToTensor(),  # 转为Tensor
     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]  # 归一化分别为RGB三通道的均值和标准差
)

# Load the raw CIFAR-10 data.
# 下载数据然后进行变换
train_data = datasets.CIFAR10(root='./data', train=True,
                              download=True, transform=transform)  # download如果为True,则网上下载,若已有下载好的数据就不会重复下载

test_data = datasets.CIFAR10(root='./data', train=False,
                             download=True, transform=transform)

# 通过train_loader把数据传入网络
# 参数num_works:用多少个子进程加载数据。0表示数据将在主进程中加载(默认:0)
train_loader = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True)
test_loader = DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=True)
Files already downloaded and verified
Files already downloaded and verified

定义神经网络

# 用于ResNet18和34的残差快,用的是两层的恒等残差快即2个3x3
class BasicBlock(nn.Module):  # nn.Module是所有神经网络的基类,自己定义的任何神经网络都要继承nn.Module
    expansion = 1

    def __init__(self, in_planes, planes, stride=1):
        super(BasicBlock, self).__init__()  # 第四、五行都是python类继承的基本操作,此写法应该是python2.7的继承格式,但python3里写这个好像也可以
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3,  # 输入in_planes个通道,输出planes的通道即planes个卷积核
                               stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
                               stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)

        self.shortcut = nn.Sequential()
        # 经过处理后的x 要与 x 的维度相同(尺寸和深度)
        # 如果不相同,需要添加卷积+BN来变换为同一纬度
        if stride != 1 or in_planes != self.expansion * planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion * planes,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion * planes)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)
        out = F.relu(out)  # 不具备可学习参数的层,将它们用函数代替,这样可以不用放在构造函数中进行初始化。
        # reLu其实没有可学习的参数,只是进行运算而已,所以使用functional中的relu函数
        # 而卷积层和全连接层都有可学习的参数,所以用的是nn.Module中的类
        return out


# 用于ResNet50,101和152的残差块,用的是1x1 + 3x3 + 1x1的卷积
class Bottleneck(nn.Module):
    # 前面1x1和3x3卷积的filter个数相等,最后1x1卷积是其expansion倍
    expansion = 4

    def __init__(self, in_planes, planes, stride=1):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)

        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
                               stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)

        self.conv3 = nn.Conv2d(planes, self.expansion * planes,
                               kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(self.expansion * planes)

        self.shorcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion * planes:
            self.shorcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion * planes,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion * planes)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = F.relu(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))
        out += self.shorcut(x)
        out = F.relu(out)


class ResNet(nn.Module):
    def __init__(self, block, num_blocks, num_classes=10):
        super(ResNet, self).__init__()
        self.in_planes = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)  # 池化层
        self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
        self.linear = nn.Linear(512 * block.expansion, num_classes)  # 线性层

    def _make_layer(self, block, planes, num_blocks, stride=1):
        strides = [stride] + [1] * (num_blocks - 1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x):
        out = F.relu(self.maxpool(self.bn1(self.conv1(x))))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        # out = F.avg_pool2d(out, 7, stride=1)  # [(7 - 7 + 0) / 1]  + 1 = 1. 所以最后输出1x1
        out = F.avg_pool2d(out, 1, stride=1)  # [(1 - 1 + 0) / 1]  + 1 = 1. 所以最后输出1x1
        out = out.view(out.size(0), -1)  # .view( )是一个tensor的方法,使得tensor改变size但是元素的总数是不变的。
        out = self.linear(out)
        return out


def ResNet18():
    return ResNet(BasicBlock, [2, 2, 2, 2])


def ResNet34():
    return ResNet(BasicBlock, [3, 4, 6, 3])


def ResNet50():
    return ResNet(Bottleneck, [3, 4, 6, 3])


def ResNet101():
    return ResNet(Bottleneck, [3, 4, 23, 3])


def ResNet152():
    return ResNet(Bottleneck, [3, 8, 36, 3])
# if __name__ == "__main__":
use_gpu = torch.cuda.is_available()
device = torch.device("cuda" if use_gpu else "cpu")
print('use: ', device)

# 定义神经网络
net = ResNet34().to(device)  # 通过to方法,可在CPU和GPU之间相互移动
print(net)
use:  cuda
ResNet(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (1): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (2): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
  )
  (layer2): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential(
        (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (2): BasicBlock(
      (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (3): BasicBlock(
      (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
  )
  (layer3): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential(
        (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (2): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (3): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (4): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (5): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
  )
  (layer4): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (2): BasicBlock(
      (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
  )
  (linear): Linear(in_features=512, out_features=10, bias=True)
)

定义损失函数和优化器

import torch.optim as optim  # 深度学习中常用的优化方法都封装于此

criterion = nn.CrossEntropyLoss()  # 用到神经网络工具箱nn中的交叉熵损失函数
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)  # optim模块中的SGD梯度优化方式---随机梯度下降

训练网络

第一节:把最开始放在trainloader里面的数据给转换成variable,然后指定为网络的输入;

第二节:每次循环新开始的时候,要确保梯度归零

第三节:forward+backward,就是调用我们在第三步里面实例化的net()实现前传,loss.backward()实现后传

每结束一次循环,要确保梯度更新

all_train_costs = []  # 获取每个iter的平均训练损失
all_train_accs = []

test_cost = []  # 获取epoch的平均测试损失
test_accs = []

best_acc = 0  # best test accuracy
EPOCH_NUM = 20

for pass_id in range(EPOCH_NUM):
    print('\nTraining epoch:%d' % pass_id)
    
    # 开始训练
    net.train()  # 同下面的net.eval(): 是针对网络训练和测试时采用不同方式的情况,如:Batch Normalization和Droupout
    running_loss = 0.0  # 定义一个变量方便我们对loss进行输出
    correct = 0.0
    total = 0
    timestart = time.time()
    for batch_id, data in enumerate(train_loader, 0):  # 每个小批量输出
        
        inputs, labels = data  # data是从enumberate返回的data,包含数据和标签信息,分别赋值给inputs和labels
        if use_gpu:
            inputs, labels = inputs.cuda(), labels.cuda()
        
        # zero the parameter gradients
        optimizer.zero_grad()  # 要把梯度重新归零,因为反向传播过程中梯度会累加上一次循环的梯度
        
        # forward + backward + optimize
        outputs = net(inputs)  # 把每个批量数据输入网络
        loss = criterion(outputs, labels)  # 计算每个批量的损失值
        loss.backward()  # loss进行反向传播,自动计算所有的梯度
        optimizer.step()  # 当执行反向传播之后,把优化器的参数进行更新,以便进行下一轮
        
        # print statistics
        running_loss += loss.item()
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)  
        correct += (predicted == labels).sum().item()  
        # 此时这里的correct是tensor,而python自动创建的tensor类型是torch.LongTensor。
        # 在pytorch中的int/long之间的运算得到的还是整形。
        # 需要用item()转化为标量,即还原到基本的python运算。
        
        # iter的训练结果
        all_train_costs.append(running_loss / total)  # 样本平均损失
        all_train_accs.append(correct / total)  # 样本平均正确率
        
        if batch_id % 391 == 390:  # print every 391 mini-batches
            print('[%d, %5d] Loss: %.3f | Acc: %.3f%% (%d/%d)' %
                 (pass_id, batch_id, running_loss / total, 100.*correct/total, correct, total))
        
    
    print('Epoch:{:d}| loss:{:.3f} acc:{:.3f} time:{:.2f}s'.format(pass_id, running_loss / total, correct/total, time.time() - timestart), end=' ')
    
    print('\nTesting epoch:%d' % pass_id)
    # 开始测试
    net.eval()
    test_loss = 0.0
    correct = 0.0
    total = 0
    with torch.no_grad():
        for batch_id, data in enumerate(test_loader):  # 循环每一个batch
            images, labels = data
            if use_gpu:
                images, labels = images.cuda(), labels.cuda()
        
            outputs = net(images)  # 输入网络进行测试
            loss = criterion(outputs, labels)
            
            test_loss += loss.item()
            _,predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    
    print('Epoch: %d | Loss: %.3f | Acc: %.3f%% (%d/%d)'
                 % (pass_id, test_loss/total, 100.*correct/total, correct, total))
    
    # epoch的测试结果
    test_cost.append(test_loss / total)  # 这里师兄那代码是loss.item()
    test_accs.append(correct / total)
    
    # save checkpoint.
    acc = 100.*correct/total
    if acc > best_acc:
        print('Saving..')
        state = {
            'net': net.state_dict(),
            'acc': acc,
            'epoch': pass_id,
        }
        if not os.path.isdir('checkpoint'):
            os.mkdir('checkpoint')
        torch.save(state, './checkpoint/ckpt.pth')
        best_acc =  acc

print('Finished Training and Testing !')    
Training epoch:0
[0,   390] Loss: 0.012 | Acc: 43.816% (21908/50000)
Epoch:0| loss:0.012 acc:0.438 time:151.05s 
Testing epoch:0
Epoch: 0 | Loss: 0.010 | Acc: 52.960% (5296/10000)
Saving..

Training epoch:1
[1,   390] Loss: 0.009 | Acc: 58.678% (29339/50000)
Epoch:1| loss:0.009 acc:0.587 time:149.10s 
Testing epoch:1
Epoch: 1 | Loss: 0.009 | Acc: 59.990% (5999/10000)
Saving..

Training epoch:2
[2,   390] Loss: 0.007 | Acc: 66.418% (33209/50000)
Epoch:2| loss:0.007 acc:0.664 time:149.77s 
Testing epoch:2
Epoch: 2 | Loss: 0.008 | Acc: 64.500% (6450/10000)
Saving..

Training epoch:3
[3,   390] Loss: 0.006 | Acc: 72.142% (36071/50000)
Epoch:3| loss:0.006 acc:0.721 time:149.77s 
Testing epoch:3
Epoch: 3 | Loss: 0.008 | Acc: 63.460% (6346/10000)

Training epoch:4
[4,   390] Loss: 0.005 | Acc: 76.526% (38263/50000)
Epoch:4| loss:0.005 acc:0.765 time:149.15s 
Testing epoch:4
Epoch: 4 | Loss: 0.008 | Acc: 66.690% (6669/10000)
Saving..

Training epoch:5
[5,   390] Loss: 0.004 | Acc: 79.876% (39938/50000)
Epoch:5| loss:0.004 acc:0.799 time:149.68s 
Testing epoch:5
Epoch: 5 | Loss: 0.008 | Acc: 67.810% (6781/10000)
Saving..

Training epoch:6
[6,   390] Loss: 0.004 | Acc: 83.128% (41564/50000)
Epoch:6| loss:0.004 acc:0.831 time:149.23s 
Testing epoch:6
Epoch: 6 | Loss: 0.008 | Acc: 68.190% (6819/10000)
Saving..

Training epoch:7
[7,   390] Loss: 0.003 | Acc: 86.184% (43092/50000)
Epoch:7| loss:0.003 acc:0.862 time:149.85s 
Testing epoch:7
Epoch: 7 | Loss: 0.009 | Acc: 66.930% (6693/10000)

Training epoch:8
[8,   390] Loss: 0.003 | Acc: 88.460% (44230/50000)
Epoch:8| loss:0.003 acc:0.885 time:149.49s 
Testing epoch:8
Epoch: 8 | Loss: 0.009 | Acc: 67.520% (6752/10000)

Training epoch:9
[9,   390] Loss: 0.002 | Acc: 90.346% (45173/50000)
Epoch:9| loss:0.002 acc:0.903 time:149.96s 
Testing epoch:9
Epoch: 9 | Loss: 0.010 | Acc: 67.770% (6777/10000)

Training epoch:10
[10,   390] Loss: 0.002 | Acc: 91.584% (45792/50000)
Epoch:10| loss:0.002 acc:0.916 time:149.25s 
Testing epoch:10
Epoch: 10 | Loss: 0.009 | Acc: 68.740% (6874/10000)
Saving..

Training epoch:11
[11,   390] Loss: 0.001 | Acc: 93.290% (46645/50000)
Epoch:11| loss:0.001 acc:0.933 time:149.49s 
Testing epoch:11
Epoch: 11 | Loss: 0.010 | Acc: 68.630% (6863/10000)

Training epoch:12
[12,   390] Loss: 0.001 | Acc: 94.270% (47135/50000)
Epoch:12| loss:0.001 acc:0.943 time:149.27s 
Testing epoch:12
Epoch: 12 | Loss: 0.010 | Acc: 69.860% (6986/10000)
Saving..

Training epoch:13
[13,   390] Loss: 0.001 | Acc: 95.076% (47538/50000)
Epoch:13| loss:0.001 acc:0.951 time:149.41s 
Testing epoch:13
Epoch: 13 | Loss: 0.011 | Acc: 68.360% (6836/10000)

Training epoch:14
[14,   390] Loss: 0.001 | Acc: 95.912% (47956/50000)
Epoch:14| loss:0.001 acc:0.959 time:149.70s 
Testing epoch:14
Epoch: 14 | Loss: 0.011 | Acc: 69.890% (6989/10000)
Saving..

Training epoch:15
[15,   390] Loss: 0.001 | Acc: 96.218% (48109/50000)
Epoch:15| loss:0.001 acc:0.962 time:149.20s 
Testing epoch:15
Epoch: 15 | Loss: 0.011 | Acc: 70.670% (7067/10000)
Saving..

Training epoch:16
[16,   390] Loss: 0.001 | Acc: 96.732% (48366/50000)
Epoch:16| loss:0.001 acc:0.967 time:148.99s 
Testing epoch:16
Epoch: 16 | Loss: 0.011 | Acc: 69.140% (6914/10000)

Training epoch:17
[17,   390] Loss: 0.001 | Acc: 97.200% (48600/50000)
Epoch:17| loss:0.001 acc:0.972 time:150.15s 
Testing epoch:17
Epoch: 17 | Loss: 0.012 | Acc: 70.010% (7001/10000)

Training epoch:18
[18,   390] Loss: 0.001 | Acc: 97.354% (48677/50000)
Epoch:18| loss:0.001 acc:0.974 time:150.21s 
Testing epoch:18
Epoch: 18 | Loss: 0.012 | Acc: 69.410% (6941/10000)

Training epoch:19
[19,   390] Loss: 0.001 | Acc: 97.364% (48682/50000)
Epoch:19| loss:0.001 acc:0.974 time:149.82s 
Testing epoch:19
Epoch: 19 | Loss: 0.012 | Acc: 69.070% (6907/10000)
Finished Training and Testing !

画loss与acc的关系图

def draw_loss_acc(loss, acc, mode='train'):
    iters = len(loss)  # 若model==train时,即为iter的长度。若mode==test时,iters为epoch的长度。
    plt.plot(range(iters), np.ones(iters), 'r--', label='1')
    plt.plot(range(iters), loss, label='loss')
    plt.plot(range(iters), acc, label='acc')
    plt.title(mode)
    if mode == 'train':
        plt.xlabel('iter')  # 训练时保存的是iter的损失
    else:
        plt.xlabel('epoch')  # 测试时保存的epoch的损失
        
    plt.ylabel('loss_acc')
    plt.legend()
    plt.savefig(os.path.join('lost_acc','loss_acc_{}.png'.format(mode)))
    plt.show()
    plt.clf()
draw_loss_acc(all_train_costs, all_train_accs, 'train')

在这里插入图片描述

draw_loss_acc(test_cost,test_accs,'test')

在这里插入图片描述

画单独的loss or acc的图

def draw_loss_or_acc(data, label, mode='train'):
    iters = len(data)
    plt.plot(range(iters),data, label=label)
    plt.title(mode+'-'+label)
    if mode == 'train':
        plt.xlabel('iter')
    else:
        plt.xlabel('epoch')
    plt.ylabel(mode + '_' +label)  # 俩字符串拼接
    plt.legend()
    plt.savefig(os.path.join('lost_acc','{}_{}.png'.format(label,mode)))
    plt.show()
    plt.clf()
draw_loss_or_acc(all_train_costs,'cost','train')

在这里插入图片描述

draw_loss_or_acc(all_train_accs,'acc','train')

在这里插入图片描述

draw_loss_or_acc(test_cost,'cost','test')

在这里插入图片描述

draw_loss_or_acc(test_accs,'acc','test')

在这里插入图片描述

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
### 回答1: PyTorch的ResNet-18在CIFAR-10数据集的预训练模型是指在经过大规模的图像数据集上进行预训练后的ResNet-18模型,以便在CIFAR-10数据集上进行更好的图像分任务。 ResNet-18是一个由18个卷积层和全连接层组成的深度神经网络。预训练模型是指在大规模数据上进行训练得到的模型参数,因此具有更好的泛化性能。CIFAR-10是一个包含10别的图像分数据集,用于在小尺寸图像上进行模型训练和评估。 通过使用预训练的ResNet-18模型,在CIFAR-10数据集上进行图像分任务时,我们可以利用预训练模型的权重参数来加快训练过程并提高准确率。预训练模型的好处是可以从大规模数据中学习到更多的特征表示,这些特征表示通常具有更高的鉴别性,因此可以更好地捕捉图像的关键特征。 对于CIFAR-10数据集,预训练模型可以有效地缩短训练时间并提高模型的收敛速度,因为在预训练模型中已经包含了对图像的一些共享特征的学习。通过在CIFAR-10数据集上进行微调,即在预训练模型的基础上进行进一步的训练,可以逐步调整模型参数以适应CIFAR-10数据集的特定要求,从而提高最终的图像分性能。 总而言之,PyTorch的ResNet-18在CIFAR-10的预训练模型是通过在大规模数据上进行训练,在CIFAR-10数据集上进行图像分任务时使用的预训练模型。这个预训练模型可以帮助提高训练速度和分准确率,并且在模型训练和微调时起到了重要作用。 ### 回答2: PyTorch的ResNet-18是一种在CIFAR-10数据集上进行预训练的深度神经网络模型CIFAR-10是一个包含10别的图像分数据集,包括飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车。 ResNet-18是指由18个卷积层和全连接层组成的深度残差网络。该网络的设计思想是通过残差连接(即跳过连接)来解决深度网络中的梯度消失问题,使得网络具有更好的训练效果。这意味着在每个卷积层之后,输入信号可以通过两条路径传递:一条直接连接到后续层,另一条通过卷积操作后再进行连接。这种设计可以使网络更加容易学习输入和输出之间的映射关系。 在CIFAR-10上预训练的ResNet-18模型具有多个优点。首先,这个模型具有较小的参数量和计算复杂度,适合在资源有限的环境下使用。其次,该模型经过在CIFAR-10数据集上的预训练,可以直接用于图像分任务。通过在CIFAR-10上进行预训练,模型可以学习到一般的图像特征和模式,使其能够更好地泛化到其他似的图像分任务中。 通过使用预训练的ResNet-18模型,我们可以利用其已经学到的特征和知识,节省训练时间,并为我们的具体图像分任务提供一个良好的起点。此外,该模型可以通过微调(fine-tuning)进一步优化,以适应特定任务的需求。 综上所述,PyTorch的ResNet-18在CIFAR-10的预训练模型是一个有价值的工具,可以用于图像分任务,具有较小的参数量和计算复杂度,预先学习了一般的图像特征和模式,并可以通过微调进一步适应特定任务的需求。 ### 回答3: PyTorch的预训练模型ResNet-18在CIFAR-10数据集上表现出色。首先,CIFAR-10是一个包含10个不同别的图像数据集,每个别有6000个图像,共计60000个图像。ResNet-18是一个基于深度残差网络的模型,它具有18个卷积层和全连接层。该模型在ImageNet数据集上进行了预训练,其中包含了1000个别的图像。 当我们将预训练的ResNet-18模型应用于CIFAR-10数据集时,可以得到很好的结果。因为CIFAR-10数据集的图像尺寸较小(32x32),相对于ImageNet数据集中的图像(224x224),所以ResNet-18模型CIFAR-10上的训练速度更快。此外,ResNet-18模型通过残差连接解决了深度网络中的梯度消失问题,这使得它在CIFAR-10数据集上的表现也非常稳定。 通过使用预训练模型,我们可以通过迁移学习的方式节省训练时间。我们可以先将ResNet-18加载到内存中,然后只需针对CIFAR-10数据集的最后一层或几层进行微调即可。这样可以有效地提高模型CIFAR-10上的性能。 总之,PyTorch中的预训练模型ResNet-18在CIFAR-10数据集上表现优秀。它通过残差连接解决了深度网络中的梯度消失问题,具有较快的训练速度和较好的稳定性。使用预训练模型可以节省训练时间,并通过微调模型的方式进一步提高性能。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值