【深度学习】pytorch——实现CIFAR-10数据集的分类

本文详细介绍了如何使用PyTorch库在CIFAR-10数据集上进行深度学习模型的构建,包括数据加载预处理、网络结构设计、损失函数和优化器选择、训练过程和测试评估。通过一步步讲解,展示了如何用LeNet网络对图像进行分类。
摘要由CSDN通过智能技术生成

笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~

往期文章:
【深度学习】pytorch——快速入门

CIFAR-10简介

CIFAR-10是一个常用的图像分类数据集,每张图片都是 3×32×32,3通道彩色图片,分辨率为 32×32。

它包含了10个不同类别,每个类别有6000张图像,其中5000张用于训练,1000张用于测试。这10个类别分别为:飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。

CIFAR-10分类任务是将这些图像正确地分类到它们所属的类别中。对于这个任务,可以使用深度学习模型,如卷积神经网络(CNN)来实现高效的分类。

CIFAR-10分类任务是一个比较典型的图像分类问题,在计算机视觉领域中被广泛使用,是检验深度学习模型表现的一个重要基准。

CIFAR-10数据集分类实现步骤

  1. 使用torchvision加载并预处理CIFAR-10数据集
  2. 定义网络
  3. 定义损失函数和优化器
  4. 训练网络并更新网络参数
  5. 测试网络

一、数据加载及预处理

实现数据加载及预处理

import torch as t
import torchvision as tv
import torchvision.transforms as transforms
from torchvision.transforms import ToPILImage
show = ToPILImage() # 可以把Tensor转成Image,方便可视化

# 第一次运行程序torchvision会自动下载CIFAR-10数据集,大约100M。
# 如果已经下载有CIFAR-10,可通过root参数指定

# 定义对数据的预处理
transform = transforms.Compose([
        transforms.ToTensor(), # 转为Tensor
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化
                             ])

# 训练集
trainset = tv.datasets.CIFAR10(		# PyTorch提供的CIFAR-10数据集的类,用于加载CIFAR-10数据集。
                    root='D:/深度学习基础/pytorch/data/', 	# 设置数据集存储的根目录。
                    train=True, 	# 指定加载的是CIFAR-10的训练集。
                    download=True,	# 如果数据集尚未下载,设置为True会自动下载CIFAR-10数据集。
                    transform=transform)	# 设置数据集的预处理方式。

# 数据加载器
trainloader = t.utils.data.DataLoader(
                    trainset, 		# 指定了要加载的训练集数据,即CIFAR-10数据集。
                    batch_size=4,	# 每个小批量(batch)的大小是4,即每次会加载4张图片进行训练。
                    shuffle=True, 	# 在每个epoch训练开始前,会打乱训练集中数据的顺序,以增加训练效果。
                    num_workers=2)	# 使用2个进程来加载数据,以提高数据的加载速度。

# 测试集
testset = tv.datasets.CIFAR10(
                    'D:/深度学习基础/pytorch/data/',
                    train=False, 
                    download=True, 
                    transform=transform)

testloader = t.utils.data.DataLoader(
                    testset,
                    batch_size=4, 
                    shuffle=False,
                    num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

这段代码主要是使用PyTorch和torchvision库来加载并处理CIFAR-10数据集,其中包括训练集和测试集。

  1. import torch as timport torchvision as tv 导入了PyTorch和torchvision库。
  2. import torchvision.transforms as transforms 导入了torchvision.transforms模块,用于进行数据转换和增强操作。
  3. from torchvision.transforms import ToPILImage 导入了ToPILImage类,它可以将Tensor对象转换为PIL Image对象,以方便后续的可视化操作。
  4. show = ToPILImage() 创建一个ToPILImage对象,用于将张量(Tensor)对象转换为PIL Image对象,以便于后续的可视化操作。
  5. transform = transforms.Compose([...]) 定义对数据的预处理操作,将多个预处理操作组合在一起,形成一个数据预处理的管道。该管道首先使用transforms.ToTensor()函数将图像转换为张量(Tensor)对象,然后使用transforms.Normalize()函数对图像进行归一化操作,以便于后续的训练。
  6. trainset = tv.datasets.CIFAR10([...]) 使用tv.datasets.CIFAR10()函数加载CIFAR-10数据集,并指定数据集的存储位置、是否为训练集、是否需要下载等参数。还可以通过transform参数来指定对数据进行的预处理操作。
  7. trainloader = t.utils.data.DataLoader([...]) 使用PyTorch的DataLoader类来创建一个数据加载器,该加载器可以按照指定的批量大小将数据集分成小批量进行加载。可以指定加载器的参数,如批量大小、是否随机洗牌、使用的进程数等。
  8. testset = tv.datasets.CIFAR10([...])testloader = t.utils.data.DataLoader([...]) 与训练集的加载方式类似,只是将参数中的train改为False,表示这是测试集。
  9. classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') 定义了CIFAR-10数据集中包含的10个类别。

注:tv.datasets.CIFAR10()函数会自动下载CIFAR-10数据集并存储到指定位置,如果已经下载过该数据集,可以通过root参数来指定数据集的存储位置,避免重复下载浪费时间和带宽。

归一化的理解

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化

transforms.Normalize()函数实现了对图像数据进行归一化操作。该函数的参数是均值和标准差,在CIFAR-10数据集中,每个像素有3个通道(R,G,B),因此传入的均值和标准差是一个长度为3的元组。这里(0.5, 0.5, 0.5)表示每个通道的均值为0.5,(0.5, 0.5, 0.5)表示每个通道的标准差也为0.5。具体地,对于每个像素的每个通道,该函数执行以下计算:

input[channel] = (input[channel] - mean[channel]) / std[channel]

其中,input[channel]表示一个像素的某个通道的像素值,mean[channel]std[channel]分别表示该通道的均值和标准差。通过这样的归一化操作,每个通道的像素值都将落在-1到1之间,从而便于模型的训练。

因此,这行代码的作用是对CIFAR-10数据集中的图像进行归一化,将每个通道的像素值映射到-1到1之间。

访问数据集

Dataset对象

Dataset对象是一个数据集,可以按下标访问,返回形如(data, label)的数据。

(data, label) = trainset[100]	# 从训练集中获取第100个样本的数据(图像)和标签。
print(classes[label])	

# (data + 1) / 2是为了还原被归一化的数据,将之前归一化的数据重新映射到0到1的范围内。
show((data + 1) / 2).resize((200, 200))

输出为:

ship
在这里插入图片描述

Dataloader对象

Dataloader是一个可迭代的对象,它将dataset返回的每一条数据拼接成一个batch,并提供多线程加速优化和数据打乱等操作。当程序对dataset的所有数据遍历完一遍之后,相应的对Dataloader也完成了一次迭代

dataiter = iter(trainloader)
images, labels = next(dataiter) # 返回4张图片及标签
print(','.join('%11s'%classes[labels[j]] for j in range(4)))
show(tv.utils.make_grid((images+1)/2)).resize((400,100))
  • 使用iter(trainloader)将训练数据加载器转换成一个迭代器对象dataiter

  • 使用next(dataiter)从迭代器中获取下一个批次的数据。这里假设每个批次的大小为4,所以imageslabels分别是一个包含4张图片和对应标签的张量。

  • 通过一个循环遍历了这4张图片的标签,并使用classes[labels[j]]将每个标签转换为对应的类别名称。classes是一个包含CIFAR-10数据集各个类别名称的列表。

  • 使用tv.utils.make_grid()函数将这4张图片拼接成一张网格图,并通过(images+1)/2将像素值从[-1, 1]的范围映射到[0, 1]的范围。使用show()函数显示图像,并调用resize()对图像进行调整大小,再使用print()输出调整大小后的图像。

输出为:
cat, truck, plane, deer
在这里插入图片描述

二、定义网络

LeNet网络,self.conv1第一个参数为3通道,因为CIFAR-10是3通道彩图

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5) 
        self.conv2 = nn.Conv2d(6, 16, 5)  
        self.fc1   = nn.Linear(16*5*5, 120)  
        self.fc2   = nn.Linear(120, 84)
        self.fc3   = nn.Linear(84, 10)

    def forward(self, x): 
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) 
        x = F.max_pool2d(F.relu(self.conv2(x)), 2) 
        x = x.view(x.size()[0], -1) 	# -1表示会自适应的调整剩余的维度
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)        
        return x


net = Net()
print(net)

输出为:

Net(
  (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)

模型包含以下层:

  1. self.conv1: 输入通道数为3,输出通道数为6,卷积核大小为5x5的卷积层。
  2. self.conv2: 输入通道数为6,输出通道数为16,卷积核大小为5x5的卷积层。
  3. self.fc1: 输入大小为16x5x5,输出大小为120的全连接层。
  4. self.fc2: 输入大小为120,输出大小为84的全连接层。
  5. self.fc3: 输入大小为84,输出大小为10的全连接层。

模型的前向传播函数(forward):

  1. 先经过第一个卷积层,然后应用ReLU激活函数和2x2的最大池化操作。
  2. 再经过第二个卷积层,同样应用ReLU激活函数和2x2的最大池化操作。
  3. 通过x.view(x.size()[0], -1)将特征张量x展平为一维向量,以便输入全连接层。
  4. 依次经过两个全连接层,并使用ReLU激活函数进行非线性变换。
  5. 最后一层是一个全连接层,输出大小为10,对应CIFAR-10数据集的10个类别。这里没有使用激活函数,因为该模型将其输出直接作为分类的得分。

总体而言,该模型由两个卷积层和三个全连接层组成,用于对CIFAR-10数据集进行图像分类。

三、定义损失函数和优化器(loss和optimizer)

from torch import optim
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
  • nn.CrossEntropyLoss()创建了一个交叉熵损失函数的实例,用于计算分类任务中的损失。交叉熵损失函数通常用于多类别分类问题,它将模型的输出与真实标签进行比较,并计算出一个数值作为损失值,用来衡量模型预测与真实标签之间的差异。

  • optim.SGD(net.parameters(), lr=0.001, momentum=0.9)创建了一个随机梯度下降(SGD)优化器的实例。

    net.parameters()表示要优化的模型参数,即神经网络中的权重和偏置。

    lr=0.001是学习率(learning rate),控制每次参数更新的步长大小。

    momentum=0.9表示动量(momentum)参数,用于加速优化过程并避免陷入局部最优解。

四、训练网络并更新网络参数

t.set_num_threads(8)	# 设置线程数为 8,以加速训练过程。
for epoch in range(2):  	# 指定训练的轮数为 2 轮(epoch),即遍历整个数据集两次。
    
    running_loss = 0.0		# 记录当前训练阶段的损失值
    for i, data in enumerate(trainloader, 0):
        
        # 输入数据
        inputs, labels = data
        
        # 梯度清零
        optimizer.zero_grad()		# 每个 batch 开始时,将优化器的梯度缓存清零,以避免梯度累积
        
        # forward + backward 
        outputs = net(inputs)
        loss = criterion(outputs, labels)	# 进行前向传播,然后计算损失函数 loss
        loss.backward()   	# 自动计算损失函数相对于模型参数的梯度
        
        # 更新参数 
        optimizer.step()	# 使用优化器 optimizer 来更新模型的权重和偏置,以最小化损失函数
        
        # 打印log信息
        # loss 是一个scalar,需要使用loss.item()来获取数值,不能使用loss[0]
        running_loss += loss.item()
        if i % 2000 == 1999: # 每2000个batch打印一下训练状态
            print('[%d, %5d] loss: %.3f' \
                  % (epoch+1, i+1, running_loss / 2000))
            running_loss = 0.0
print('Finished Training')

输出结果:

[1,  2000] loss: 2.247
[1,  4000] loss: 1.974
[1,  6000] loss: 1.753
[1,  8000] loss: 1.605
[1, 10000] loss: 1.527
[1, 12000] loss: 1.472
[2,  2000] loss: 1.424
[2,  4000] loss: 1.386
[2,  6000] loss: 1.331
[2,  8000] loss: 1.303
[2, 10000] loss: 1.300
[2, 12000] loss: 1.275
Finished Training

enumerate函数

enumerate是Python内置函数之一,用于将一个可迭代的对象(如列表、元组、字符串等)组合为一个索引序列。它返回一个枚举对象,包含了原始对象中的元素以及对应的索引值。

enumerate函数的一般语法如下:

enumerate(iterable, start=0)

其中,iterable是要进行枚举的可迭代对象,start是可选参数,表示起始的索引值,默认为0。

下面是一个简单的例子来说明enumerate函数的用法:

fruits = ['apple', 'banana', 'cherry']
for index, fruit in enumerate(fruits):
    print(index, fruit)

输出结果:

0 apple
1 banana
2 cherry

在上述示例中,enumerate函数将列表fruits中的元素与对应的索引值配对,然后通过for循环依次取出每个元素和索引值进行打印。

在机器学习或深度学习中,enumerate函数常常与循环结合使用,用于遍历数据集或批次数据,并同时获取数据的索引值。这在模型训练过程中很有用,可以方便地记录当前处理的数据的位置信息。

五、测试网络

部分数据集(实际的label)

dataiter = iter(testloader)
images, labels = next(dataiter) # 一个batch返回4张图片
print('实际的label: ', ' '.join(\
            '%08s'%classes[labels[j]] for j in range(4)))
show(tv.utils.make_grid(images+1)/2).resize((400,100))

输出结果:

实际的label:  cat     ship      ship      plane

在这里插入图片描述

部分数据集(预测的label)

# 计算图片在每个类别上的分数
outputs = net(images)
# 得分最高的那个类
_, predicted = t.max(outputs.data, 1)

print('预测结果: ', ' '.join('%5s'\
            % classes[predicted[j]] for j in range(4)))

输出结果:

预测结果:  cat      car       ship        plane

在这里插入图片描述

整个测试集

correct = 0 # 预测正确的图片数
total = 0 # 总共的图片数

# 使用 torch.no_grad() 上下文管理器,表示在测试过程中不需要计算梯度,以提高速度和节约内存
with t.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = t.max(outputs, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum()

print('10000张测试集中的准确率为: %d %%' % (100 * correct / total))

输出结果:

10000张测试集中的准确率为: 54 %

训练的准确率远比随机猜测(准确率10%)好。

### 回答1: 你可以使用 PyTorch 的 torchvision 库中的 `torchvision.datasets` 模块来读取 CIFAR-10 数据集。下面是一个示例代码: ``` import torch import torchvision import torchvision.transforms as transforms transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=100, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') ``` 在上面的代码中,我们首先定义了一个变换,其中包含了将图像转换为张量,并对图像进行归一化处理。然后,我们读取了训练数据集和测试数据集,并使用 PyTorch 的 `DataLoader` 封装了数据。最后,我们定义了 CIFAR-10 中的别名称。 ### 回答2: PyTorch提供了一个方便的数据预处理工具包torchvision,它可以轻松加载CIFAR-10数据集。下面是使用PyTorch读取CIFAR-10数据集的步骤: 1. 导入必要的库和模块,包括torch、torchvision和transforms。 ```python import torchvision import torchvision.transforms as transforms ``` 2. 定义数据转换操作。CIFAR-10数据集中的图像是32x32像素的彩色图像,因此我们需要将它们转换为张量,并进行归一化处理。 ```python transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ]) ``` 3. 加载训练集和测试集。可以使用torchvision.datasets.CIFAR10函数加载CIFAR-10数据集。需要指定数据集的根目录、训练集还是测试集以及定义的数据转换操作。 ```python trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False, num_workers=2) ``` 4. 可以通过遍历训练集和测试集的数据加载器来获取图像数据和标签。 ```python for batch_idx, (images, labels) in enumerate(trainloader): # 使用图像和标签进行计算 for batch_idx, (images, labels) in enumerate(testloader): # 使用图像和标签进行计算 ``` 这些步骤将帮助您使用PyTorch读取和加载CIFAR-10数据集。您可以根据需要对数据进行预处理、调整批大小和进行其他操作来适应您的模型训练需求。 ### 回答3: 使用PyTorch读取CIFAR-10数据集可以通过以下几个步骤完成: 1. 导入所需的库和模块: ``` import torch import torchvision import torchvision.transforms as transforms ``` 2. 设置数据预处理和转换: ``` transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) ``` 这里的预处理操作将图像数据转换为张量,并对每个通道进行标准化处理,以确保数据平稳和可训练性。 3. 下载和加载数据集: ``` trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) ``` 这里的`train=True`表示我们加载的是训练集,`train=False`表示加载测试集。`batch_size`表示每个小批次包含的样本数量,`shuffle`表示是否对数据进行随机洗牌,`num_workers`表示用于数据加载的并行线程数。 4. 定义别标签: ``` classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') ``` 这里的别标签是CIFAR-10数据集中的十个别。 5. 使用数据集: ``` # 对训练集进行迭代并显示其中一部分图像和标签 dataiter = iter(trainloader) images, labels = dataiter.next() # 打印图像 print(images.shape) # 打印标签 print(labels) ``` 这里的`images`是一个包含训练图像的张量,`labels`是对应的标签。 以上是使用PyTorch读取CIFAR-10数据集的基本步骤,你可以根据需要进一步处理数据和构建模型进行训练和测试。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zz的学习笔记本

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值