大数据学习之路110-使用redis自己管理偏移量

本文介绍了如何在大数据学习过程中,利用Redis来管理Kafka消费者的偏移量,防止数据重复消费。通过清除旧数据,记录和检查偏移量,确保在连接Kafka前能正确读取上次的消费位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先我们将上次存进去的数据清理掉:

然后写程序,在上次程序的基础上,增加了记录偏移量的代码:

package com.test.sparkStreaming

import com.test.utils.JPools
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, HasOffsetRanges, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import redis.clients.jedis.Jedis

/**
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

未来@音律

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值