CSU2105: Front Nine

题目大意

这里写图片描述

给定如图 n×h n × h 地图( n26 n ≤ 26 ),从 (0,a) ( 0 , a ) 出发随机向右上、正右、右下走,概率分别为 P1 P 1 , P0 P 0 , P1 P − 1 , 求路径下方面积的期望值。

原题:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=2105

样例1
4 10 3 100 0 0
2 10 5 50 0 50
4.5000000000
10.0000000000

思路

对于每一个 x x 坐标,可以递推求出对应的y坐标的概率。

所求期望值等于每条连线出现的概率乘以其下方面积。

每条连线出现概率又可由其左边一点出现的概率乘以其方向的概率得到。

#include <iostream>
#include <string>
#include <string.h>
#include <vector>
#include <map>
#include <queue>
#include <algorithm>
#include <stdio.h>

using namespace std;

double prob[100005][105];

void solve(int n) {
    memset(prob, 0, sizeof(prob));
    int h, a;
    double pn, p0, p1;
    cin >> h >> a >> pn >> p0 >> p1;
    if (h == 0) {
        printf("%.10lf\n", 0);
        return;
    }
    pn /= 100;
    p0 /= 100;
    p1 /= 100;
    prob[0][a] = 1;
    double exp = 0;
    for (int i = 0; i < n; i++) {
        exp += 0.5 * prob[i][0] * p1;
        prob[i + 1][0] += prob[i][0] * (p0 + pn);
        prob[i + 1][1] += prob[i][0] * p1;
        for (int j = 1; j < h; j++) {
            exp += prob[i][j] * ((double)j + 0.5) * p1
                + prob[i][j] * (double)j * p0
                + prob[i][j] * ((double)j - 0.5) * pn;
            prob[i + 1][j + 1] += prob[i][j] * p1;
            prob[i + 1][j] += prob[i][j] * p0;
            prob[i + 1][j - 1] += prob[i][j] * pn;
        }
        exp += ((double)(h - 0.5)) * prob[i][h] * pn
            + ((double)h) * prob[i][h] * (p0 + p1);
        //printf("exp=%.10lf\n", exp);
        prob[i + 1][h] += prob[i][h] * (p0 + p1);
        prob[i + 1][h - 1] += prob[i][h] * pn;
    }
    printf("%.10lf\n", exp);
}

int main() {
    int n;
    while (cin >> n)
        solve(n);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值