语义分割数据标注json转png格式

该代码实现了一个Python脚本,用于将Labelme工具生成的JSON格式语义分割标签批量转换为PNG图像。它遍历指定目录下的所有JSON文件,读取图像数据,处理形状信息,并保存为PNG图像和相应的标签可视化图。同时,还会创建一个label_names.txt文件来存储标签名称。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 使用语义分割时,我们使用labelme制作标签,但是生成的是json格式,往往需要转成Png格式。

因此,下面我写了一个批量转png代码。

import argparse
import base64
import json
import os
import os.path as osp
import imgviz
import PIL.Image
import yaml
from labelme.logger import logger
from labelme import utils

'''single json file'''
def main():
    logger.warning(
        "This script is aimed to demonstrate how to convert the "
        "JSON file to a single image dataset."
    )
    logger.warning(
        "It won't handle multiple JSON files to generate a "
        "real-use dataset."
    )

    parser = argparse.ArgumentParser()
    #parser.add_argument("json_file")
    parser.add_argument('--jsonfiles', nargs='?', const=True, default="datasets//before", help='resume most recent training') #设置输入路径
    parser.add_argument("-o", "--out", default="datasets//png")  #设置输出路径
    args = parser.parse_args()
    import glob
    jsonfiles = glob.glob(args.jsonfiles+"/*.json")
    print(jsonfiles)
    for json_file in jsonfiles:
        if args.out is None:
            out_dir = osp.basename(json_file).replace(".", "_")
            out_dir = osp.join(osp.dirname(json_file), out_dir)
        else:
            out_dir = args.out
        if not osp.exists(out_dir):
            os.mkdir(out_dir)

        data = json.load(open(json_file))
        imageData = data.get("imageData")

        if not imageData:
            imagePath = os.path.join(os.path.dirname(json_file), data["imagePath"])
            with open(imagePath, "rb") as f:
                imageData = f.read()
                imageData = base64.b64encode(imageData).decode("utf-8")
        img = utils.img_b64_to_arr(imageData)

        label_name_to_value = {"_background_": 0}
        for shape in sorted(data["shapes"], key=lambda x: x["label"]):
            label_name = shape["label"]
            if label_name in label_name_to_value:
                label_value = label_name_to_value[label_name]
            else:
                label_value = len(label_name_to_value)
                label_name_to_value[label_name] = label_value
        lbl, _ = utils.shapes_to_label(
            img.shape, data["shapes"], label_name_to_value
        )

        label_names = [None] * (max(label_name_to_value.values()) + 1)
        for name, value in label_name_to_value.items():
            label_names[value] = name

        lbl_viz = imgviz.label2rgb(
            label=lbl, image=imgviz.asgray(img), label_names=label_names, loc="rb"
        )

        label_name  = json_file.split('\\')[-1].replace('.json','.png')
        image_name  = json_file.split('\\')[-1].replace('.json','.jpg')
        PIL.Image.fromarray(img).save(osp.join(out_dir, image_name))
        utils.lblsave(osp.join(out_dir, label_name), lbl)
        PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, "label_viz.png"))

        with open(osp.join(out_dir, "label_names.txt"), "w") as f:
            for lbl_name in label_names:
                f.write(lbl_name + "\n")

        # 生成info.yaml文件
        # logger.warning('info.yaml is being replaced by label_names.txt')
        # info = dict(label_names=label_names)
        # with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
        #     yaml.safe_dump(info, f, default_flow_style=False)

        logger.info("Saved to: {}".format(out_dir))

if __name__ == "__main__":
    main()
 

效果展示: 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值