三重积分
三维直角坐标系
∫∫∫f(x,y,z)dv = ∫dx∫dy∫f(x,y,z)dz
柱坐标系
∫∫∫f(x,y,z)dv = ∫rdθ∫dr∫f(x,y,z)dz
rdθ、dr、dz就相当于微元体的三个边长
直角坐标系与柱坐标系的转换
x=rcosθ
y=rsinθ
z=z
f(x,y,z) = f(rcosθ,rsinθ,z) = g(r,θ,z)
球面坐标系
∫∫∫f(x,y,z)dv = ∫rdφ∫dr∫f(x,y,z)rsinφdθ
rdφ、dr、rsinφdθ就相当于微元体的三个边长
直角坐标系与球面坐标系的转换
x=rsinφcosθ
y=rsinφsinθ
z=rcosφ
f(x,y,z) = f(rsinφcosθ,rsinφsinθ,rcosφ) = g(r,θ,φ)
第一型曲面积分
∫∫f(x,y,z)dS
三维曲面内对f积分转化为二维投影面内对f积分
第二型曲面积分
∫∫F(x,y,z)·dS F=P*i+Q*j+R*k dS=dydz*i+dzdx*j+dxdy*k F与dS为一个向量
三维有向曲面内对F积分转化为二维有向投影面内对F积分
第二型闭曲面积分通过高斯公式转化为三重积分
二重积分
二维直角坐标系
∫∫∫f(x,y)dσ = ∫dx∫f(x,y,z)dy
极坐标系
∫∫∫f(x,y)dσ = ∫dθ∫f(x,y,z)rdr
rdθ与dr相当于微元面的两个边长
直角坐标系与极坐标系的转换
x=rcosθ
y=rsinθ
f(x,y) = f(rcosθ,rsinθ) = g(r,θ)
拿书上的例题进行说明
书上其实涉及到的积分就三种,在球面区域内对标量函数积分,在球体区域内对标量函数积分,在圆面区域内对标量函数积分
在以M为球心,at为半径的球面内积分
书上写错了,应该是dS
∫∫dS = ∫rsinφdθ∫rdφ,rsinφdθ与rdφ就相当于球面上微元面的两个边长
在以M为圆心,at为半径的圆面上积分
二重积分∫∫dσ = ∫rdθ∫dr,rdθ与dr就相当于圆面上微元面的两个边长
在以M为球心,at为半径的球体内积分
三重积分 ∫∫dv = ∫rsinφdθ∫rdφ∫dr,rsinφdθ与rdφ与dr就相当于球体内微元体的三个边长