数学物理方程—积分复习

三重积分

三维直角坐标系
∫∫∫f(x,y,z)dv = ∫dx∫dy∫f(x,y,z)dz
柱坐标系
∫∫∫f(x,y,z)dv = ∫rdθ∫dr∫f(x,y,z)dz
rdθ、dr、dz就相当于微元体的三个边长
直角坐标系与柱坐标系的转换
x=rcosθ
y=rsinθ
z=z
f(x,y,z) = f(rcosθ,rsinθ,z) = g(r,θ,z)

球面坐标系
∫∫∫f(x,y,z)dv = ∫rdφ∫dr∫f(x,y,z)rsinφdθ
rdφ、dr、rsinφdθ就相当于微元体的三个边长
直角坐标系与球面坐标系的转换
x=rsinφcosθ
y=rsinφsinθ
z=rcosφ
f(x,y,z) = f(rsinφcosθ,rsinφsinθ,rcosφ) = g(r,θ,φ)


第一型曲面积分

∫∫f(x,y,z)dS
三维曲面内对f积分转化为二维投影面内对f积分


第二型曲面积分

∫∫F(x,y,z)·dS   F=P*i+Q*j+R*k  dS=dydz*i+dzdx*j+dxdy*k   F与dS为一个向量
三维有向曲面内对F积分转化为二维有向投影面内对F积分
第二型闭曲面积分通过高斯公式转化为三重积分


二重积分

二维直角坐标系
∫∫∫f(x,y)dσ = ∫dx∫f(x,y,z)dy

极坐标系
∫∫∫f(x,y)dσ = ∫dθ∫f(x,y,z)rdr
rdθ与dr相当于微元面的两个边长
直角坐标系与极坐标系的转换
x=rcosθ
y=rsinθ
f(x,y) = f(rcosθ,rsinθ) = g(r,θ)

 

拿书上的例题进行说明


书上其实涉及到的积分就三种,在球面区域内对标量函数积分,在球体区域内对标量函数积分,在圆面区域内对标量函数积分

 在以M为球心,at为半径的球面内积分

书上写错了,应该是dS
∫∫dS = ∫rsinφdθ∫rdφ,rsinφdθ与rdφ就相当于球面上微元面的两个边长


在以M为圆心,at为半径的圆面上积分

二重积分∫∫dσ = ∫rdθ∫dr,rdθ与dr就相当于圆面上微元面的两个边长


在以M为球心,at为半径的球体内积分

三重积分 ∫∫dv = ∫rsinφdθ∫rdφ∫dr,rsinφdθ与rdφ与dr就相当于球体内微元体的三个边长

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值