big O与small o,以及复杂度

P问题、NP问题、NP完全问题、NP困难问题


这些问题就是从时间复杂度为多项式时间出发定义的

时间复杂度

完成一个算法所需要的时间

时间复杂度分类:多项式时间、常数时间、对数时间等等。
时间复杂度用big O表示

空间复杂度

完成一个算法所需要占用的存储空间

算法理论专注于设计有效的算法,而复杂性理论(时间、空间复杂度)专注于理解为什么对于某类问题不存在有效的算法。

big O

又称为渐进符号,是用于描述函数渐进行为数学符号

无穷大渐进



T(n)趋于无穷大时,n^2占主导地位

分析算法效率时,n为输入的数据大小,T为计算时间,当n越来越大时,T≈n^2,称该算法具有n^2阶的时间复杂度

无穷小渐进

samll o

无穷小的比阶:高阶无穷小、同阶无穷小、等价无穷小、k阶无穷小

exp(x) = 1+ x + x^2/2 + R(x)

泰勒误差余项R(x)=o(x^3)表示余项R(x)为比x^3高阶的无穷小

参考

WIKI

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值