P问题、NP问题、NP完全问题、NP困难问题
这些问题就是从时间复杂度为多项式时间出发定义的
时间复杂度
完成一个算法所需要的时间
时间复杂度分类:多项式时间、常数时间、对数时间等等。
时间复杂度用big O表示
空间复杂度
完成一个算法所需要占用的存储空间。
算法理论专注于设计有效的算法,而复杂性理论(时间、空间复杂度)专注于理解为什么对于某类问题不存在有效的算法。
big O
又称为渐进符号,是用于描述函数渐进行为的数学符号
无穷大渐进
T(n)趋于无穷大时,n^2占主导地位
分析算法效率时,n为输入的数据大小,T为计算时间,当n越来越大时,T≈n^2,称该算法具有n^2阶的时间复杂度
无穷小渐进
samll o
无穷小的比阶:高阶无穷小、同阶无穷小、等价无穷小、k阶无穷小
exp(x) = 1+ x + x^2/2 + R(x)
泰勒误差余项R(x)=o(x^3)表示余项R(x)为比x^3高阶的无穷小
参考
WIKI