单圆盘转子的临界转速和不平衡响应

转子动力学,钟一鄂
我水平太差,不太好理解这本书,/(ㄒoㄒ)/~~

第一章 http://book.ucdrs.superlib.net/views/specific/2929/bookDetail.jsp?dxNumber=000001034999&d=CE35F309CB85878C55BA563D0038FEED&fenlei=1811050303

第一章 单圆盘转子的临界转速和不平衡响应

刚性支承:轴承与轴承座完全刚性
简单旋转机械可简化为:无质量的弹性转轴上装有圆盘,两端刚性支撑

1.1 转子的涡动

为了避开静变形,将单圆盘转子竖直放置,圆盘位于中间,作转速 Ω \Omega Ω的匀速运动。此时给转轴加一横向冲击,研究这种运动的性质。
定义坐标系:固定坐标系 x y s xys xys,轴向为 s s s,其余两个方向为 x x x y y y。圆盘圆心为 o ′ o' o,静止时圆心所在位置为 o o o o ′ o' o的坐标为 ( x , y ) (x,y) (x,y)
图1.2
圆盘此时只受转轴给的弹性恢复力 F = − k r , r = o o ′ ˉ F=-kr, r=\bar{oo'} F=kr,r=ooˉ
圆盘运动的微分方程
{ m x ′ ′ = − k x m y ′ ′ = − k y \left\{ \begin{aligned} mx'' = -kx \\ my'' = -ky \end{aligned} \right. {mx=kxmy=ky
w n 2 = k / m w_n^2=k/m wn2=k/m
{ x ′ ′ + w n 2 x = 0 y ′ ′ + w n 2 y = 0 \left\{ \begin{aligned} x'' + w_n^2x = 0 \\ y'' + w_n^2y = 0 \end{aligned} \right. {x+wn2x=0y+wn2y=0
其解可写作
{ x = X c o s ( w n t + a x ) y = Y s i n ( w n t + a y ) \left\{ \begin{aligned} x = Xcos(w_nt + a_x) \\ y = Ysin(w_nt + a_y) \end{aligned} \right. {x=Xcos(wnt+ax)y=Ysin(wnt+ay)
振幅与初相由一瞬间的冲击来决定。
一般情况下,振幅 X ≠ Y X\neq Y X=Y,即o’的运动轨迹为椭圆, o ′ o' o的运动称为涡动或进动。自然频率为 o ′ o' o的进动角速度。

复变量 z = x + i y z=x+iy z=x+iy,用一个复变量代表两个实变量
上面的公式可简化为 z ′ ′ + w n 2 z = 0 z'' + w_n^2 z = 0 z+wn2z=0,解为 z = B 1 e i w n t + B 2 e − i w n t z=B_1 e^{iw_nt} + B_2 e^{-iw_nt} z=B1eiwnt+B2eiwnt B 1 , B 2 B_1,B_2 B1,B2为复数由一瞬间的冲击来决定。
解的第一项为正进动,运动轨迹为圆,半径为 ∣ B 1 ∣ |B_1| B1,运动方向同 Ω \Omega Ω;解的第一项为反进动,运动轨迹为圆,半径为 ∣ B 2 ∣ |B_2| B2,运动方向与 Ω \Omega Ω相反。两种圆运动合成了椭圆运动。
o ′ o' o的运动必然会有下面四种情况:
B 1 = B 2 B_1 = B_2 B1=B2,轨迹为直线
B 1 ≠ B 2 B_1 \neq B_2 B1=B2,轨迹为椭圆,正进动半径大于反进动半径时,作正进动,反之,作反进动。(正进动与反进动合成后的运动也可以称为进动)
B 1 = 0 , B 2 ≠ 0 B_1 = 0, B_2\neq 0 B1=0,B2=0,轨迹为圆,反进动
B 2 = 0 , B 1 ≠ 0 B_2 = 0, B_1\neq 0 B2=0,B1=0,轨迹为圆,正进动

o ′ o' o的进动属于自然振动,频率就是转轴静止时弯曲振动的自然频率。

如果考虑空气阻力, z ′ ′ + 2 n z ′ + w n 2 z = 0 z''+2nz' + w_n^2 z = 0 z+2nz+wn2z=0,解为 z = e − n t ( B 1 e i w n ′ t + B 2 e − i w n ′ t ) , w n ′ = w n 2 − n 2 z=e^{-nt(B_1e^{iw'_nt}+B_2e^{-iw'_nt})}, w'_n = \sqrt{w_n^2 - n^2} z=ent(B1eiwnt+B2eiwnt),wn=wn2n2
这种情况下,涡动是衰减的, o ′ o' o最终趋于 o o o

1.2 圆盘的偏心质量引起的振动,临界转速

圆盘重心 c c c o ′ o' o不重合, o ′ c o'c oc为偏心距
{ x c ′ ′ = x ′ ′ − e Ω 2 c o s ( Ω t ) y c ′ ′ = y ′ ′ − e Ω 2 s i n ( Ω t ) \left\{ \begin{aligned} x''_c = x'' - e\Omega^2cos(\Omega t) \\ y''_c = y'' - e\Omega^2sin(\Omega t) \end{aligned} \right. {xc=xeΩ2cos(Ωt)yc=yeΩ2sin(Ωt)
由质心运动定理,有
{ m x c ′ ′ = − k x m y c ′ ′ = − k y \left\{ \begin{aligned} mx''_c = -kx \\ my''_c = -ky \end{aligned} \right. {mxc=kxmyc=ky
可得 o ′ o' o运动微分方程(强迫振动)
{ x ′ ′ + w n 2 x = e Ω 2 c o s ( Ω t ) y ′ ′ + w n 2 y = e Ω 2 s i n ( Ω t ) \left\{ \begin{aligned} x'' + w_n^2 x = e\Omega^2cos(\Omega t)\\ y'' + w_n^2 y = e\Omega^2sin(\Omega t) \end{aligned} \right. {x+wn2x=eΩ2cos(Ωt)y+wn2y=eΩ2sin(Ωt)
复变量形式 z ′ ′ + w n 2 z = e Ω 2 e i Ω t z'' + w_n^2 z = e \Omega^2 e^{i\Omega t} z+wn2z=eΩ2eiΩt特解 z = A e i Ω t z=Ae^{i\Omega t} z=AeiΩt
将特解带入方程可得振幅 ∣ A ∣ = ∣ e ( Ω / w n ) 2 1 − ( Ω / w n ) 2 ∣ |A|=|\frac{e(\Omega / w_n)^2}{1-(\Omega / w_n)^2}| A=1(Ω/wn)2e(Ω/wn)2 z = e ( Ω / w n ) 2 1 − ( Ω / w n ) 2 e i Ω t z=\frac{e(\Omega / w_n)^2}{1-(\Omega / w_n)^2}e^{i\Omega t} z=1(Ω/wn)2e(Ω/wn)2eiΩt
可知响应频率与激励频率相同,响应相位与激励相位相同( Ω < w n \Omega < w_n Ω<wn)或相差180°( Ω > w n \Omega > w_n Ω>wn
转动过程中 o o ′ c oo'c ooc位于同一直线上,直线绕 o o o以角速度 Ω \Omega Ω转动, o ′ o' o c c c作同步正进动
Ω < w n \Omega < w_n Ω<wn A > 0 A>0 A>0 o ′ o' o c c c o o o的同一侧; Ω > w n \Omega > w_n Ω>wn A < 0 A<0 A<0 c c c o ′ o' o o o o的之间,当 Ω > > w n \Omega >> w_n Ω>>wn A ≈ − e A\approx -e Ae,此时 c c c几乎位于 o o o,称为自动对心。
Ω = w n \Omega = w_n Ω=wn A = ∞ A=\infty A=,由于公式无阻尼,幅值无限大, w n w_n wn称为临界角速度,单位为rpm,则称为临界转速。
转子工作转速小于临界转速称为刚性轴,反之称为柔性轴。

如果考虑空气阻力, z ′ ′ + 2 n z ′ + w n 2 z = e Ω 2 e i Ω t z''+2nz'+w_n^2z = e\Omega^2 e^{i\Omega t} z+2nz+wn2z=eΩ2eiΩt,特解为 z = ∣ A ∣ e i ( Ω t − θ ) z=|A|e^{i(\Omega t - \theta)} z=Aei(Ωtθ)
将特解带入微分方程,可求出 ∣ A ∣ |A| A θ \theta θ
∣ A ∣ = e ( Ω / w n ) 2 [ 1 − ( Ω / w n ) 2 ] 2 + ( 2 n / w n ) 2 ( Ω / w n ) 2 |A| = \frac{e(\Omega/w_n)^2}{\sqrt{[1-(\Omega/w_n)^2]^2 + (2n/w_n)^2(\Omega/w_n)^2}} A=[1(Ω/wn)2]2+(2n/wn)2(Ω/wn)2 e(Ω/wn)2
t g ( θ ) = ( 2 n / w n ) ( Ω / w n ) 1 − ( Ω / w n ) 2 tg(\theta)=\frac{(2n/w_n)(\Omega/w_n)}{1-(\Omega/w_n)^2} tg(θ)=1(Ω/wn)2(2n/wn)(Ω/wn)
频响曲线为幅值 ∣ A ∣ |A| A与相位 θ \theta θ随频率比 Ω / w n \Omega/w_n Ω/wn的变化
由于外阻尼, Ω / w n = 1 \Omega/w_n=1 Ω/wn=1时的响应并不是最大值,最大值发生在 Ω / w n ≤ 1 \Omega/w_n \leq 1 Ω/wn1
在实际中通过测量升速与降速时转子的响应来确定临界转速,因此升速时根据最大响应确定的临界转速比真实的临界转速大,而降速时根据最大响应确定的临界转速比真实的临界转速小。
由于阻尼的存在, o ′ c o o'co oco三点并不在同一条直线上。但当 Ω > > w n \Omega >> w_n Ω>>wn θ ≈ π \theta \approx \pi θπ,此时 c c c仍然可认为几乎位于 o o o,自动对心。

1.3 圆盘相对于转动坐标系的运动

转子相对转动坐标系的运动为相对运动,转子相对固定坐标系的运动为绝对运动
固定坐标系 s x y sxy sxy,转动坐标系 s ξ η s\xi \eta sξη,以转子角速度 Ω \Omega Ω s s s轴转动
o ′ o' o的绝对坐标 z = x + i y z=x+iy z=x+iy,相对坐标 ζ = ξ + i η \zeta=\xi+i\eta ζ=ξ+iη
z = r e i ( θ + Ω t ) z=re^{i(\theta+\Omega t)} z=rei(θ+Ωt)
ζ = r e i θ \zeta = re^{i\theta} ζ=reiθ
因此可以得出 z = ζ e i Ω t z=\zeta e^{i\Omega t} z=ζeiΩt,相对坐标与绝对坐标的关系
带入之前的冲击振动微分方程可得(绝对坐标用相对坐标表示), ζ ′ ′ + 2 i Ω ζ ′ + ( w n 2 − Ω 2 ) ζ = 0 \zeta'' + 2i\Omega \zeta' + (w_n^2 - \Omega^2)\zeta = 0 ζ+2iΩζ+(wn2Ω2)ζ=0,解为 ζ = B 1 e i ( w n − Ω ) t + B 2 e − i ( w n + Ω ) t \zeta = B_1e^{i(w_n-\Omega)t} + B_2e^{-i(w_n+\Omega)t} ζ=B1ei(wnΩ)t+B2ei(wn+Ω)t
转动坐标系下的解仍是正反进动的合成,但两种进动角速度不同,合成的轨迹也不是椭圆,而是花瓣形。

带入之前的不平衡强迫振动微分方程可得, ζ ′ ′ + 2 i Ω ζ ′ + ( w n 2 − Ω 2 ) ζ = e Ω 2 \zeta'' + 2i\Omega \zeta' + (w_n^2 - \Omega^2)\zeta = e \Omega^2 ζ+2iΩζ+(wn2Ω2)ζ=eΩ2,解为 ζ = e ( Ω / w n ) 2 1 − ( Ω / w n ) 2 \zeta = \frac{e(\Omega/w_n)^2}{1-(\Omega/w_n)^2} ζ=1(Ω/wn)2e(Ω/wn)2
ζ \zeta ζ与时间无关,即 o ′ o' o相对转动坐标系不动,而且 ∣ ζ ∣ = ∣ A ∣ |\zeta|=|A| ζ=A,固定坐标系下的响应振幅等于转动坐标系下相对平衡位置的大小

1.4 陀螺力矩

圆盘不装在转轴中间,当转轴弯曲,圆盘轴线会与两支点连线有一夹角 ψ \psi ψ
圆盘对质心 o ′ o' o的动量矩为 H = J p Ω H=J_p \Omega H=JpΩ,动力矩与两支点连线夹角 ψ \psi ψ
由于进动,圆盘的动量矩方向会不断变化,根据动量矩定理,动量矩变化是受到了力矩(动量变化是受到了力)。
力矩 M g = − ( w n x H ) = H x w n M_g = -(w_n x H) = H x w_n Mg=(wnxH)=Hxwn,力矩方向与平面 o ′ A B o'AB oAB垂直,称为陀螺力矩或回转力矩,是圆盘加于转轴的力矩。

注:一些书上说固定坐标系下叫陀螺力矩,转动坐标系下叫回转力矩。这本书上管这个力矩叫惯性力矩,但我认为在转动坐标系下才叫惯性力矩,地面上的固定坐标系一般认为是惯性坐标系怎么会有惯性力呢?

∣ M g ∣ = H w n s i n ( ψ ) |M_g| = H w_n sin(\psi) Mg=Hwnsin(ψ),由于 ψ \psi ψ很小, ∣ M g ∣ = H w n ψ |M_g| = H w_n \psi Mg=Hwnψ,力矩与转角成正比,相当于弹性力矩
在正进动 0 < ψ < π / 2 0<\psi <\pi /2 0<ψ<π/2时,陀螺力矩使转轴变形减小,提高了临界角速度
在反进动 π > ψ > π / 2 \pi > \psi >\pi /2 π>ψ>π/2时,陀螺力矩使转轴变形减大,降低了临界角速度

1.4.1 圆盘的角速度

圆盘不装在转轴中间时,圆盘有绕圆盘直径的转动,也有绕圆盘轴线的转动,用欧拉角来描述。
移动坐标系 o ′ x y z o'xyz oxyz
固结于圆盘的坐标系 o ′ ζ η ξ o'\zeta \eta \xi oζηξ o ′ ξ o'\xi oξ为圆盘中心轴

圆盘初始位于 o ′ ξ 0 η 0 ζ 0 = o ′ x y z o'\xi_0 \eta_0 \zeta_0 = o'xyz oξ0η0ζ0=oxyz
o ′ y o'y oy θ y \theta_y θy到达 o ′ ξ 1 η 0 ζ 1 o'\xi_1 \eta_0 \zeta_1 oξ1η0ζ1
o ′ ξ 1 o'\xi_1 oξ1 θ ξ \theta_{\xi} θξ到达 o ′ ξ 1 η 1 ζ o'\xi_1 \eta_1 \zeta oξ1η1ζ
o ′ ζ o'\zeta oζ ϕ \phi ϕ到达 o ′ ξ η ζ o'\xi \eta \zeta oξηζ
圆盘绝对角速度 w = θ ξ ′ + θ y ′ + ϕ ′ w=\theta_{\xi}'+\theta_y'+\phi' w=θξ+θy+ϕ
圆盘相对随动坐标系 o ′ ξ 1 η 1 ζ o'\xi_1 \eta_1 \zeta oξ1η1ζ的转动, w 1 = θ ξ ′ + θ y ′ w_1 = \theta_{\xi}'+\theta_y' w1=θξ+θy

w w w沿随动坐标系 o ′ ξ 1 η 1 ζ o'\xi_1 \eta_1 \zeta oξ1η1ζ各轴的分解
{ w ξ 1 = θ ξ ′ w η 1 = θ y ′ c o s ( θ ξ ) w ζ = ϕ ′ − θ y ′ s i n ( θ ξ ) = Ω − θ y ′ s i n ( θ ξ ) \left\{ \begin{aligned} w_{\xi_1} = \theta_{\xi}'\\ w_{\eta_1} = \theta_y'cos(\theta_{\xi})\\ w_{\zeta} = \phi' - \theta_y'sin(\theta_{\xi}) = \Omega - \theta_y'sin(\theta_{\xi}) \end{aligned} \right. wξ1=θξwη1=θycos(θξ)wζ=ϕθysin(θξ)=Ωθysin(θξ)

w w w沿随动坐标系 o ′ ξ η ζ o'\xi \eta \zeta oξηζ各轴的分解
{ w ξ = θ ξ ′ c o s ( ϕ ) + θ y ′ c o s ( θ ξ ) s i n ( ϕ ) w η = − θ ξ ′ s i n ( ϕ ) + θ y ′ c o s ( θ ξ ) c o s ( ϕ ) w ζ = Ω − θ y ′ s i n ( θ ξ ) \left\{ \begin{aligned} w_{\xi} = \theta_{\xi}'cos(\phi) + \theta_y'cos(\theta_{\xi})sin(\phi)\\ w_{\eta} = -\theta_{\xi}'sin(\phi) + \theta_y'cos(\theta_{\xi})cos(\phi)\\ w_{\zeta} = \Omega - \theta_y'sin(\theta_{\xi}) \end{aligned} \right. wξ=θξcos(ϕ)+θycos(θξ)sin(ϕ)wη=θξsin(ϕ)+θycos(θξ)cos(ϕ)wζ=Ωθysin(θξ)

w w w沿随动坐标系 o ′ ζ o'\zeta oζ轴与 o ′ ξ 1 η 1 o'\xi_1 \eta_1 oξ1η1平面的分解
{ w e = w ξ 1 i 1 + w η 1 j 1 = w ξ i + w η j w ζ = Ω − θ y ′ s i n ( θ ξ ) \left\{ \begin{aligned} w_e = w_{\xi_1} i_1 + w_{\eta_1} j_1 = w_{\xi}i + w_{\eta}j \\ w_{\zeta} = \Omega - \theta_y'sin(\theta_{\xi}) \end{aligned} \right. {we=wξ1i1+wη1j1=wξi+wηjwζ=Ωθysin(θξ)

w 1 w1 w1沿随动坐标系 o ′ ξ 1 η 1 ζ o'\xi_1 \eta_1 \zeta oξ1η1ζ各轴的分解
{ w 1 ξ 1 = θ ξ ′ w 1 η 1 = θ y ′ c o s ( θ ξ ) w 1 ζ = − θ y ′ s i n ( θ ξ ) \left\{ \begin{aligned} w_{1 \xi_1} = \theta_{\xi}'\\ w_{1 \eta_1} = \theta_y'cos(\theta_{\xi})\\ w_{1 \zeta} = - \theta_y'sin(\theta_{\xi}) \end{aligned} \right. w1ξ1=θξw1η1=θycos(θξ)w1ζ=θysin(θξ)

三维旋转:欧拉角、四元数、旋转矩阵、轴角之间的转换 https://zhuanlan.zhihu.com/p/45404840
欧拉角可视化工具 http://danceswithcode.net/engineeringnotes/rotations_in_3d/demo3D/rotations_in_3d_tool.html

1.4.2 圆盘的动量矩

只绕一根轴转动时,动量矩 H = J w H=Jw H=Jw。圆盘的转动很复杂,因此动量矩也很复杂。
书上之前转动坐标系为 s ξ η s\xi \eta sξη,现在为 ζ ξ η \zeta \xi \eta ζξη
将动量矩在转动坐标系分解, G = J ξ w ξ i + J η w η j + J ζ w ζ k G=J_{\xi} w_{\xi} i + J_{\eta} w_{\eta} j + J_{\zeta} w_{\zeta} k G=Jξwξi+Jηwηj+Jζwζk,前两个转动惯量为直径或赤道转动惯量 J d J_d Jd,最后一个为极转动惯量 J p J_p Jp

轴对称圆盘对其中心 o ′ o' o的动量矩, G = J d w e + J p w ζ k G=J_d w_e + J_p w_{\zeta} k G=Jdwe+Jpwζk
动量矩在自转轴上的投影, G ζ = J p ( Ω − θ y ′ s i n ( θ ξ ) ) k G_{\zeta} = J_p(\Omega - \theta_y' sin(\theta_{\xi})) k Gζ=Jp(Ωθysin(θξ))k
G = J d θ ξ ′ i 1 + J d θ y ′ c o s ( θ ξ ) j 1 + J p ( Ω − θ y ′ s i n ( θ ξ ) ) k G=J_d\theta_{\xi}' i_1 + J_d \theta_y' cos(\theta_{\xi}) j_1 + J_p(\Omega - \theta_y' sin(\theta_{\xi})) k G=Jdθξi1+Jdθycos(θξ)j1+Jp(Ωθysin(θξ))k
转轴截面转角为小量,简化为 G = J p w ζ k = H k G=J_p w_{\zeta} k = H k G=Jpwζk=Hk

1.4.3 圆盘的动能

T = G w / 2 = ( G ξ 1 w ξ 1 + G η 1 w η 1 + G ζ w ζ ) / 2 T=Gw/2 = (G_{\xi_1}w_{\xi_1} + G_{\eta_1}w_{\eta_1} + G_{\zeta}w_{\zeta})/2 T=Gw/2=(Gξ1wξ1+Gη1wη1+Gζwζ)/2
T = [ J d ( θ ξ ′ 2 + θ y ′ 2 c o s ( θ ξ ) 2 ) + J p θ y ′ 2 s i n ( θ ξ ) 2 + J p Ω 2 − 2 J p Ω θ y ′ s i n ( θ ξ ) ] / 2 T=[Jd(\theta_{\xi}'^2 + \theta_y'^2 cos(\theta_{\xi})^2) + J_p\theta_y'^2 sin(\theta_{\xi})^2 + J_p\Omega^2 - 2J_p\Omega \theta'_y sin(\theta_{\xi})]/2 T=[Jd(θξ2+θy2cos(θξ)2)+Jpθy2sin(θξ)2+JpΩ22JpΩθysin(θξ)]/2
转轴截面转角 θ ξ \theta_{\xi} θξ θ y \theta_y θy为小量,则 s i n ( θ ξ ) ≈ θ ξ ≈ θ x , c o s ( θ ξ ) ≈ 1 sin(\theta_{\xi}) \approx \theta_{\xi} \approx \theta_x, cos(\theta_{\xi}) \approx 1 sin(θξ)θξθx,cos(θξ)1,忽略二阶小量,简化为 T = [ J d ( θ x ′ 2 + θ y ′ 2 ) + J p Ω 2 − 2 J p Ω θ y ′ θ x ] / 2 T=[Jd(\theta_x'^2 + \theta_y'^2) + J_p\Omega^2 - 2J_p\Omega \theta'_y \theta_x]/2 T=[Jd(θx2+θy2)+JpΩ22JpΩθyθx]/2

注:无穷小量Infinitesimals即以数0为极限的变量,无限接近于0,二阶小量是其中一种。

1.5 圆盘绕其中心的转动方程

动量矩定理:动量矩的变化量等于外力矩
移动坐标系 o ′ x y z o'xyz oxyz中动量矩的变化率 d G d t = M \frac{dG}{dt}=M dtdG=M
转动坐标系 o ′ ξ 1 η 1 ζ o'\xi_1 \eta_1 \zeta oξ1η1ζ中动量矩的变化率 d G ^ d t = d G d t − w 1 × G \frac{d\hat{G}}{dt} = \frac{dG}{dt} - w_1\times G dtdG^=dtdGw1×G w 1 w_1 w1为转动坐标系的角速度。
− ( w 1 × G ) -(w_1 \times G) (w1×G)为陀螺力矩

将转动坐标系中的动量矩变化率沿转动坐标系各轴分解
{ d G ξ 1 d t + w 1 η 1 G ζ − w 1 ζ G η 1 = M ξ 1 d G η 1 d t + w 1 ζ G ξ − w 1 ξ 1 G ζ = M η 1 d G ζ d t + w 1 ξ 1 G η 1 − w 1 η 1 G ξ 1 = M ζ \left\{ \begin{aligned} \frac{dG_{\xi_1}}{dt} + w_{1\eta_1}G_{\zeta} - w_{1\zeta}G_{\eta_1} = M_{\xi_1}\\ \frac{dG_{\eta_1}}{dt} + w_{1\zeta}G_{\xi} - w_{1\xi_1}G_{\zeta} = M_{\eta_1}\\ \frac{dG_{\zeta}}{dt} + w_{1\xi_1}G_{\eta_1} - w_{1\eta_1}G_{\xi_1} = M_{\zeta} \end{aligned} \right. dtdGξ1+w1η1Gζw1ζGη1=Mξ1dtdGη1+w1ζGξw1ξ1Gζ=Mη1dtdGζ+w1ξ1Gη1w1η1Gξ1=Mζ
{ J d ( θ ξ ′ ′ + θ y ′ 2 s i n ( θ ξ ) c o s ( θ ξ ) ) + H θ y ′ c o s ( θ ξ ) = M ξ 1 J d ( θ y ′ ′ c o s ( θ ξ ) − 2 θ ξ θ y ′ s i n ( θ ξ ) ) − H θ ξ ′ = M η 1 d H d t = M ζ \left\{ \begin{aligned} J_d(\theta_{\xi}'' + \theta_y'^2 sin(\theta_{\xi})cos(\theta_{\xi})) + H\theta_y'cos(\theta_{\xi}) = M_{\xi_1}\\ J_d(\theta_y''cos(\theta_{\xi}) - 2\theta_{\xi}\theta_y' sin(\theta_{\xi})) - H\theta_{\xi}' = M_{\eta_1}\\ \frac{dH}{dt} = M_{\zeta} \end{aligned} \right. Jd(θξ+θy2sin(θξ)cos(θξ))+Hθycos(θξ)=Mξ1Jd(θycos(θξ)2θξθysin(θξ))Hθξ=Mη1dtdH=Mζ
转轴截面转角 θ ξ \theta_{\xi} θξ θ y \theta_y θy为小量,则 s i n ( θ ξ ) ≈ θ ξ ≈ θ x , c o s ( θ ξ ) ≈ 1 sin(\theta_{\xi}) \approx \theta_{\xi} \approx \theta_x, cos(\theta_{\xi}) \approx 1 sin(θξ)θξθx,cos(θξ)1,忽略二阶小量,简化为
{ J d θ x ′ ′ + H θ y ′ = M ξ 1 ≈ M x J d θ y ′ ′ − H θ x ′ = M η 1 ≈ M y d H d t = M ζ \left\{ \begin{aligned} J_d\theta_x'' + H\theta_y' = M_{\xi_1} \approx M_x\\ J_d\theta_y'' - H\theta_x' = M_{\eta_1} \approx M_y\\ \frac{dH}{dt} = M_{\zeta} \end{aligned} \right. Jdθx+Hθy=Mξ1MxJdθyHθx=Mη1MydtdH=Mζ
将圆盘的转动微分方程从圆盘的转动坐标系 o ′ ξ 1 η 1 ζ o'\xi_1\eta_1\zeta oξ1η1ζ转移到转动坐标系 o ′ x y ζ o'xy\zeta oxyζ

转子正常运转时,驱动力矩与阻力矩平衡, M ζ = 0 M_{\zeta}=0 Mζ=0
{ J d θ x ′ ′ + J p Ω θ y ′ = M x J d θ y ′ ′ − J p Ω θ x ′ = M y \left\{ \begin{aligned} J_d\theta_x'' + J_p \Omega \theta_y' = M_x\\ J_d\theta_y'' - J_p \Omega \theta_x' = M_y \end{aligned} \right. {Jdθx+JpΩθy=MxJdθyJpΩθx=My

圆盘所受的外力与外力矩需要转轴给的弹性力与弹性力矩来平衡,在转动坐标系中,外力为惯性力与惯性力矩
圆盘的运动微分方程,包括圆盘的移动与转动微分方程,圆盘 o ′ o' o有四个位移,绕x与绕y的转角,沿x与y的位移,
{ m x ′ ′ + k 11 x + k 14 θ y = 0 m y ′ ′ + k 22 y − k 23 θ x = 0 J d θ x ′ ′ + J p Ω θ y ′ + k 32 x + k 33 θ x = 0 J d θ y ′ ′ − J p Ω θ x ′ + k 41 x + k 41 θ y = 0 ( 1.47 ) \left\{ \begin{aligned} mx'' + k_{11}x + k_{14}\theta_y = 0 \\ my'' + k_{22}y - k_{23}\theta_x = 0 \\ J_d\theta_x'' + J_p \Omega \theta_y' + k_{32}x + k_{33}\theta_x = 0\\ J_d\theta_y'' - J_p \Omega \theta_x' + k_{41}x + k_{41}\theta_y = 0 \end{aligned} \right. (1.47) mx+k11x+k14θy=0my+k22yk23θx=0Jdθx+JpΩθy+k32x+k33θx=0JdθyJpΩθx+k41x+k41θy=0(1.47)
用拉格朗日方程也可以推出1.47

1.6 考虑陀螺力矩时,转子的临界角速度

求解1.47四个微分方程的特征根可得到转子振动的自然频率 w n w_n wn,即进动角速度。
临界角速度就是与进动角速度相等的(工作)转动角速度。

如果转轴截面为圆,则
{ k 11 = k 22 = k r r k 33 = k 44 = k ψ ψ k 14 = k 41 = k 23 = k 32 = k ψ r = k r ψ \left\{ \begin{aligned} k_{11}=k_{22}=k_{rr} \\ k_{33}=k_{44}=k_{\psi \psi} \\ k_{14}=k_{41}=k_{23}=k_{32}=k_{\psi r}=k_{r \psi} \end{aligned} \right. k11=k22=krrk33=k44=kψψk14=k41=k23=k32=kψr=krψ
复变量 z = x + i y , ψ = θ y − i θ x z=x+iy, \psi = \theta_y - i \theta_x z=x+iy,ψ=θyiθx
则1.47变为
{ m z ′ ′ + k r r z + k r ψ ψ = 0 J d ψ ′ ′ − i J p Ω ψ + k ψ r z + k ψ ψ ψ = 0 \left\{ \begin{aligned} mz'' + k_{rr}z + k_{r\psi}\psi = 0 \\ J_d\psi'' - iJ_p \Omega \psi+ k_{\psi r}z + k_{\psi \psi}\psi = 0 \end{aligned} \right. {mz+krrz+krψψ=0JdψiJpΩψ+kψrz+kψψψ=0
{ z ′ ′ + w r r 2 z + w r ψ 2 ψ = 0 ψ ′ ′ − i J p J d Ω ψ + w ψ r 2 z + w ψ ψ 2 ψ = 0 \left\{ \begin{aligned} z'' + w_{rr}^2 z + w_{r\psi}^2 \psi = 0 \\ \psi'' - i\frac{J_p}{J_d} \Omega \psi+ w_{\psi r}^2 z + w_{\psi \psi}^2 \psi = 0 \end{aligned} \right. z+wrr2z+wrψ2ψ=0ψiJdJpΩψ+wψr2z+wψψ2ψ=0
解为 z = z 0 e i w n t , ψ = ψ 0 e i w n t z=z_0e^{iw_nt}, \psi=\psi_0e^{iw_nt} z=z0eiwnt,ψ=ψ0eiwnt
带入方程可得
{ ( − w n 2 + w r r 2 ) z 0 + w r ψ 2 ψ 0 = 0 w ψ r 2 z 0 + [ − w n 2 + J p J d Ω w n + w ψ ψ 2 ] ψ 0 = 0 \left\{ \begin{aligned} (-w_n^2 + w_{rr}^2 )z_0 + w_{r\psi}^2 \psi_0 = 0 \\ w_{\psi r}^2 z_0 +[- w_n^2 + \frac{J_p}{J_d} \Omega w_n + w_{\psi \psi}^2 ] \psi_0 = 0 \end{aligned} \right. (wn2+wrr2)z0+wrψ2ψ0=0wψr2z0+[wn2+JdJpΩwn+wψψ2]ψ0=0
将上面复变量微分方程组第一个带入第二个中,得到特征值方程(频率方程),微分方程组变成了一元四次方程
( − w n 2 + w r r 2 ) [ − w n 2 + J p J d Ω w n + w ψ ψ 2 ] − w r ψ 2 w ψ r 2 = 0 (-w_n^2 + w_{rr}^2 )[- w_n^2 + \frac{J_p}{J_d} \Omega w_n + w_{\psi \psi}^2 ] - w_{r\psi}^2w_{\psi r}^2 = 0 (wn2+wrr2)[wn2+JdJpΩwn+wψψ2]wrψ2wψr2=0
该方程有四个根,四个进动角速度

如果没有陀螺力矩
{ ( − w n 2 + w r r 2 ) z 0 + w r ψ 2 ψ 0 = 0 ( − w n 2 + w ψ ψ 2 ) ψ 0 + w ψ r 2 z 0 = 0 \left\{ \begin{aligned} (-w_n^2 + w_{rr}^2 )z_0 + w_{r\psi}^2 \psi_0 = 0 \\ (-w_n^2 + w_{\psi \psi}^2 )\psi_0 + w_{\psi r}^2 z_0 = 0 \end{aligned} \right. {(wn2+wrr2)z0+wrψ2ψ0=0(wn2+wψψ2)ψ0+wψr2z0=0
( − w n 2 + w r r 2 ) ( − w n 2 + w ψ ψ 2 ) − w r ψ 2 w ψ r 2 = 0 (-w_n^2 + w_{rr}^2 )(-w_n^2 + w_{\psi \psi}^2) - w_{r\psi}^2w_{\psi r}^2 = 0 (wn2+wrr2)(wn2+wψψ2)wrψ2wψr2=0
w n 4 − ( w r r 2 + w ψ ψ 2 ) w n 2 + w r r 2 w ψ ψ 2 − w r ψ 2 w ψ r 2 = 0 w_n^4 - (w_{rr}^2 + w_{\psi \psi}^2)w_n^2 + w_{rr}^2w_{\psi \psi}^2 - w_{r\psi}^2w_{\psi r}^2 = 0 wn4(wrr2+wψψ2)wn2+wrr2wψψ2wrψ2wψr2=0
该方程有四个根,四个进动角速度,但进动角速度不会变化

进动角速度的振型, z ψ = z 0 ψ 0 = − w r ψ 2 w r r 2 − w n 2 \frac{z}{\psi} = \frac{z_0}{\psi_0} = \frac{-w_{r\psi}^2}{w_{rr}^2-w_n^2} ψz=ψ0z0=wrr2wn2wrψ2

example

圆盘质量 m = 20 k g m=20kg m=20kg,半径 R = 12 c m R=12cm R=12cm;转轴跨度 l = 75 c m l=75cm l=75cm,直径 d = 3 c m d=3cm d=3cm。圆盘至左支点的距离 a = l / 3 = 25 c m a=l/3=25cm a=l/3=25cm。求转子的进动角速度,振型,临界角速度。

求解进动角速度与临界角速度
# -*- coding: utf-8 -*-
"""
@time: 2021-08-22 下午 04:51
@author: leslie lee

转轴a位置受P力时 a处的挠度与截面转角
r = 4*P*l**3/(243*E*I)
psi = 2*P*l**2/(81*E*I)
转轴a位置受M力矩时 a处的挠度与截面转角
r = 2*M*l**2/(81*E*I)
psi = M*l/(9*E*I)
如果 P=1 M=1 得到的位移就是柔度系数
刚度矩阵为柔度矩阵的逆

sympy 复数结果 提取实部 ? 没有找到简单的好方法
as_real_imag() 结果为复数
re() 提取实部
im() 提取虚部
np.real()无法处理 应该是无法识别sympy中的虚数单位 I
"""
import numpy as np
import sympy as sp


m = 20 # 圆盘质量 kg
R = 12 # 圆盘半径 cm
l = 75 # 转轴长度 cm
d = 3 # 转轴直径 cm
a = l/3 # 圆盘位置 cm
E = 20.58*1e6  # 转轴弹性模量 N/cm^2  钢

# 圆盘转动惯量
Jp = m*R**2/2
Jd = Jp/2
# 转轴截面惯性矩
I = np.pi*d**4/64
# 转轴
P = 1
a_rr = 4*P*l**3/(243*E*I) # 单位力 产生的位移
a_rp = 2*P*l**2/(81*E*I) # 单位力 产生的转角
M = 1
a_pr = 2*M*l**2/(81*E*I) # 单位力矩 产生的位移
a_pp = M*l/(9*E*I) # 单位力矩 产生的转角
A = np.array([[a_rr, a_rp], [a_pr, a_pp]]) # 柔度矩阵 单位力产生的位移 cm/N rad/N cm/M rad/M
K = np.linalg.pinv(A) # 刚度矩阵 产生单位位移所需的力 N/cm N/rad M/rad M/cm
k_rr, k_rp, k_pr, k_pp = K[0,0], K[0,1], K[1,0], K[1,1]

""" 单位换算
krr N/cm
krp=kpr N  N/rad=N  M/cm=N*cm/cm=N   rad无量纲
kpp N*cm

w2_rr = k_rr/m   (N/cm)/(kg)=(kg*m/s^2/cm)/(kg)=100*1/s^2
w2_rp = k_rp/m   (N)/(kg)=(kg*m/s^2)/(kg)=100*cm/s^2
w2_pp = k_pp/Jd  (N*cm)/(kg*cm^2)=(kg*m/s^2*cm)/(kg*cm^2)=100*1/s^2
w2_pr = k_pr/Jd  (N)/(kg*cm^2)=(kg*m/s^2)/(kg*cm^2)=100*1/(s^2*cm)
"""
w2_rr = k_rr/m*1e2
w2_rp = k_rp/m*1e2
w2_pp = k_pp/Jd*1e2
w2_pr = k_pr/Jd*1e2


# Omega = 200 # 转速 rad/s
wn = sp.symbols('wn') # 特征根 1/s    wn = sp.Symbol('wn')
# 遍历
for Omega in np.arange(0,2000,200):
    # 方程1 有陀螺力矩
    eq1 = (-wn**2 + w2_rr)*(-wn**2 + (Jp/Jd)*Omega*wn + w2_pp) - w2_rp*w2_pr
    # 方程2 无陀螺力矩
    eq2 = (-wn**2 + w2_rr)*(-wn**2 + w2_pp) - w2_rp*w2_pr
    # 解方程

    print(sp.solve(eq2))

特征根
求临界转速,我只列举两个方法:
方1:可以绘制坎贝尔图观察
方2: O m e g a Omega Omega为反向,将 w n = − Ω w_n=-\Omega wn=Ω带入方程求解, O m e g a Omega Omega为正向,将 w n = Ω w_n=\Omega wn=Ω带入方程求解

Omega = sp.symbols('Omega') # 特征根 1/s    Omega = sp.Symbol('Omega')
eq1 = (-Omega**2 + w2_rr)*(-Omega**2 + (Jp/Jd)*Omega*Omega + w2_pp) - w2_rp*w2_pr
eq2 = (-Omega**2 + w2_rr)*(-Omega**2 - (Jp/Jd)*Omega*Omega + w2_pp) - w2_rp*w2_pr

print(sp.solve(eq1))
print(sp.solve(eq2))
'''
[-244.442111078112, 244.442111078112, -1420.23599311756*I, 1420.23599311756*I]
[-844.987991611588, -237.205839436574, 237.205839436574, 844.987991611588]
'''

前三阶临界转速为:反向237.205 正向244.442 反向844.988 rad/s,且只有三阶(取复数的实部)

求解振型
# 角速度为200rad/s时的四阶进动角速度
wns = [243.8324214, 1652.071068, -237.8166687, -1258.086821]
for wn in wns:
    z_psi = -w2_rp/(w2_rr - wn**2)  # 单位 cm
    print(z_psi)

'''
50.93070501720033
-0.5577122225702382
46.29261349959544
-0.9856062550798872
'''

振型图的绘制,以角速度为 200 r a d / s 200rad/s 200rad/s为例:
求出 o ′ o' o处的振型,两端为简支,已知一阶进动与二阶进动的振型形状,则可以绘制出大概的振型图

如果圆盘装在中间,那么 k r r = 48 E I / l 3 , k ψ ψ = 12 E I / l , k r ψ = k ψ r = 0 k_{rr}=48EI/l^3, k_{\psi \psi}=12EI/l, k_{r \psi}=k_{\psi r} = 0 krr=48EI/l3,kψψ=12EI/l,krψ=kψr=0
微分方程为
{ m z ′ ′ + k r r z = 0 J d ψ ′ ′ − i H ψ + k ψ ψ ψ = 0 \left\{ \begin{aligned} mz'' + k_{rr}z = 0 \\ J_d\psi'' - iH\psi + k_{\psi\psi}\psi = 0 \end{aligned} \right. {mz+krrz=0JdψiHψ+kψψψ=0
自然频率为
{ w n z = k r r / m − w n ψ 2 + J p J d Ω w n ψ + w ψ ψ 2 = 0 \left\{ \begin{aligned} w_{nz} = \sqrt{k_{rr}/m} \\ -w_{n \psi}^2 + \frac{J_p}{J_d} \Omega w_{n \psi} + w_{\psi\psi}^2= 0 \end{aligned} \right. wnz=krr/m wnψ2+JdJpΩwnψ+wψψ2=0

import numpy as np
import sympy as sp


m = 20 # 圆盘质量 kg
R = 12 # 圆盘半径 cm
l = 75 # 转轴长度 cm
d = 3 # 转轴直径 cm
a = l/2 # 圆盘位置 cm
E = 20.58*1e6  # 转轴弹性模量 N/cm^2  钢

# 圆盘转动惯量
Jp = m*R**2/2
Jd = Jp/2
# 转轴截面惯性矩
I = np.pi*d**4/64
# 转轴
k_rr, k_rp, k_pr, k_pp = 48*E*I/l**3, 0, 0, 12*E*I/l

w2_rr = k_rr/m*1e2
w2_rp = k_rp/m*1e2
w2_pp = k_pp/Jd*1e2
w2_pr = k_pr/Jd*1e2


Omega = sp.symbols('Omega') # 特征根 1/s    Omega = sp.Symbol('Omega')
eq1 = -Omega**2 + Jp/Jd*Omega*Omega + w2_pp
eq2 = -Omega**2 - Jp/Jd*Omega*Omega + w2_pp

print((w2_rr)**0.5)
print(sp.solve(eq1))
print(sp.solve(eq2))

'''
215.75649075713136
[-1348.47806723207*I, 1348.47806723207*I]
[-778.544175112742, 778.544175112742]
'''

因此如果圆盘置中,可以求出三个自然频率,第一个方程一个,第二个方程两个。第二个微分方程求出的也是两个进动角速度。
临界转速有两个,一阶临界转速为215.756,二阶临界转速为778.544(反进动)

1.7 弹性支承对转子临界转速的影响

轴承考虑弹性,左右支承点也有位移了就不再是之前的0,使得转子的进动角速度或临界转速降低。
支点坐标 A ′ = ( x A , y A ) , B ′ = ( x B , y B ) A'=(x_A,y_A), B'=(x_B,y_B) A=(xA,yA),B=(xB,yB) o ′ o' o的坐标 ( x , y ) (x,y) (x,y)
o ′ o' o的坐标以及截面转角 ( x , y , θ x , θ y ) = ( x 1 + x ′ , y 1 + y ′ , θ x A + θ x ′ , θ y A + θ y ′ ) (x,y,\theta_x,\theta_y) = (x_1+x', y_1+y', \theta_{xA}+\theta_x', \theta_{yA}+\theta_y') (x,y,θx,θy)=(x1+x,y1+y,θxA+θx,θyA+θy)
o ′ o' o的位移是由两部分叠加的,第一部分为轴承变形造成的转轴位移(刚体位移),第二部分为转轴弯曲变形。

下面考虑当转轴受力而只有支点发生形变时,即受外力后,弹性力来自轴承而非轴承加转轴。求转轴的柔度系数。
支点位移即 o ′ o' o位移
{ − θ x A = ( y B − y A ) / l θ y A = ( x B − x A ) / l x 1 = ( 1 − a / l ) x A + ( a / l ) x B y 1 = ( 1 − a / l ) y A + ( a / l ) y B \left\{ \begin{aligned} -\theta_{xA} = (y_B - y_A)/l \\ \theta_{yA} = (x_B - x_A)/l \\ x_{1} = (1 - a/l)x_A + (a/l)x_B \\ y_{1} = (1 - a/l)y_A + (a/l)y_B \end{aligned} \right. θxA=(yByA)/lθyA=(xBxA)/lx1=(1a/l)xA+(a/l)xBy1=(1a/l)yA+(a/l)yB
支点弹簧沿x与y方向刚度相同时,可以用复变量表示
{ r 1 = x 1 + i y 1 = ( 1 − a / l ) r A + ( a / l ) r B ψ A = θ y A − i θ x A = ( r B − r A ) / l \left\{ \begin{aligned} r_1 = x_1 + iy_1 = (1 - a/l)r_A + (a/l)r_B \\ \psi_A = \theta_{yA} -i \theta_{xA} = (r_B - r_A)/l \end{aligned} \right. {r1=x1+iy1=(1a/l)rA+(a/l)rBψA=θyAiθxA=(rBrA)/l
r A r_A rA r B r_B rB为转轴两端简支时求出的支反力与轴承刚度之比, r A = R A / k A r_A = R_A/k_A rA=RA/kA r B = R B / k B r_B=R_B/k_B rB=RB/kB k A k_A kA k A k_A kA为轴承刚度
受外力时的支反力
{ R A = P ( l − a ) / l R B = P a / l 1.7.1 \left\{ \begin{aligned} R_A=P(l-a)/l \\ R_B=Pa/l \end{aligned} \right. 1.7.1 {RA=P(la)/lRB=Pa/l1.7.1
受外力矩时的支反力
{ R A = − M / l R B = M / l 1.7.2 \left\{ \begin{aligned} R_A = -M/l \\ R_B = M/l \end{aligned} \right. 1.7.2 {RA=M/lRB=M/l1.7.2
将1.7.1带入 o ′ o' o位移,得 r 1 , ψ A r_1, \psi_A r1,ψA r 1 = a r r P , ψ A = a ψ r P r_1=a_{rr}P, \psi_A=a_{\psi r}P r1=arrP,ψA=aψrP
将1.7.2带入 o ′ o' o位移,得 r 1 , ψ A r_1, \psi_A r1,ψA r 1 = a r ψ M , ψ A = a ψ ψ M r_1=a_{r\psi}M, \psi_A=a_{\psi \psi}M r1=arψM,ψA=aψψM
这是只有支点位移时的柔度系数(只有轴承变形),再加上支点0位移时的柔度系数(只有转轴变形),即为总柔度系数。

以之前的实例,研究轴承刚度变化对临界转速的影响
将之前求得的转轴柔度系数与支点位移时的柔度系数叠加,得到总的柔度系数
由柔度矩阵取逆得出刚度矩阵,将刚度系数带入特征方程可求出自然频率与临界角速度

import numpy as np
import sympy as sp


m = 20 # 圆盘质量 kg
R = 12 # 圆盘半径 cm
l = 75 # 转轴长度 cm
d = 3 # 转轴直径 cm
a = l/3 # 圆盘位置 cm
E = 20.58*1e6  # 转轴弹性模量 N/cm^2  钢

# 圆盘转动惯量
Jp = m*R**2/2
Jd = Jp/2
# 转轴截面惯性矩
I = np.pi*d**4/64
# 转轴
kc = 81*E*I/l**3
kA = kB = np.inf # kc/10

# 支点变形时转轴的柔度系数
a_rr1 = 1/kA*(1-a/l)**2 + 1/kB*(a/l)**2
a_pr1 = (1/kB*a/l - 1/kA*(1-a/l))/l
a_rp1 = (1/kB*a/l - 1/kA*(1-a/l))/l
a_pp1 = (1/kA + 1/kB)/l**2
# 转轴变形的柔度系数
a_rr2 = 4*l**3/(243*E*I)
a_rp2 = 2*l**2/(81*E*I)
a_pr2 = 2*l**2/(81*E*I)
a_pp2 = l/(9*E*I)
# 合并
a_rr = a_rr1 + a_rr2
a_pr = a_pr1 + a_pr2
a_rp = a_rp1 + a_rp2
a_pp = a_pp1 + a_pp2

A = np.array([[a_rr, a_rp], [a_pr, a_pp]]) # 柔度矩阵 单位力产生的位移 cm/N rad/N cm/M rad/M
K = np.linalg.pinv(A) # 刚度矩阵 产生单位位移所需的力 N/cm N/rad M/rad M/cm
k_rr, k_rp, k_pr, k_pp = K[0,0], K[0,1], K[1,0], K[1,1]

w2_rr = k_rr/m*1e2
w2_rp = k_rp/m*1e2
w2_pp = k_pp/Jd*1e2
w2_pr = k_pr/Jd*1e2

Omega = sp.symbols('Omega') # 特征根 1/s    Omega = sp.Symbol('Omega')
eq1 = (-Omega**2 + w2_rr)*(-Omega**2 + (Jp/Jd)*Omega*Omega + w2_pp) - w2_rp*w2_pr
eq2 = (-Omega**2 + w2_rr)*(-Omega**2 - (Jp/Jd)*Omega*Omega + w2_pp) - w2_rp*w2_pr

print(sp.solve(eq1))
print(sp.solve(eq2))

支撑刚度变化
可以发现,减小支承刚度会显著的降低临界转速。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值