introduction to mechanical vibrations (good vibrations with Freeball)

https://www.youtube.com/watch?v=oskkteu6H_s

forced vibrations-SDOF

m x ′ ′ + k x = F 0 c o s ( w t ) mx'' + kx = F_0 cos(wt) mx+kx=F0cos(wt)
solution: x = x h + x p x = x_h + x_p x=xh+xp

homogeneous solution:
m x ′ ′ + k x = 0 mx'' + kx = 0 mx+kx=0
x h = c 1 c o s ( w n t ) + c 2 s i n ( w n t ) , w n = k / m x_h = c_1 cos(w_nt) + c_2 sin(w_n t), w_n = \sqrt{k/m} xh=c1cos(wnt)+c2sin(wnt),wn=k/m

particular solution:
solution: x p = d 1 c o s ( w t ) + d 2 s i n ( w t ) x_p = d_1 cos(wt) + d_2 sin(wt) xp=d1cos(wt)+d2sin(wt)
m x p ′ ′ + k x p = F 0 c o s ( w t ) mx_p'' + kx_p = F_0 cos(wt) mxp+kxp=F0cos(wt)
then we get: d 1 = F 0 / ( k − w 2 m ) , d 2 = 0 d_1=F_0/(k-w^2m), d_2=0 d1=F0/(kw2m),d2=0

x = c 1 c o s ( w n t ) + c 2 s i n ( w n t ) + F 0 / ( k − w 2 m ) c o s ( w t ) x = c_1 cos(w_nt) + c_2 sin(w_n t) + F_0/(k-w^2m) cos(wt) x=c1cos(wnt)+c2sin(wnt)+F0/(kw2m)cos(wt)
if w = w n w = w_n w=wn, then x = ∞ x = \infty x=


if third part is F 0 / ( k − w ^ n 2 m ) c o s ( w ^ n t ) t , w ^ n → w n F_0/(k-\hat{w}_n^2m) cos(\hat{w}_n t)t, \hat{w}_n \rightarrow w_n F0/(kw^n2m)cos(w^nt)t,w^nwn
x = c 1 c o s ( w n t ) + c 2 s i n ( w n t ) + F 0 / ( k − w ^ n 2 m ) c o s ( w ^ n t ) t x = c_1 cos(w_nt) + c_2 sin(w_n t) + F_0/(k-\hat{w}_n^2m) cos(\hat{w}_n t)t x=c1cos(wnt)+c2sin(wnt)+F0/(kw^n2m)cos(w^nt)t
then system will lead to instability


How do we know sin and cos are the only solutions to y ′ ′ = − y y′′=−y y=y?
https://math.stackexchange.com/questions/3293359/how-do-we-know-sin-and-cos-are-the-only-solutions-to-y-y

aeroelastic instability-SDOF

在这里插入图片描述
m x ′ ′ + c x ′ + k x = f , f = 1 / 2 ρ u 2 s C X mx'' + cx' + kx = f, f= 1/2 \rho u^2 s C_X mx+cx+kx=f,f=1/2ρu2sCX
u u u free stream velocity s s s, C X C_X CX coefficient of force in X direction
ρ u 2 / 2 \rho u^2/2 ρu2/2 also called dynamic pressure
C X = u r e l 2 / u 2 ( C L c o s α + C D s i n α ) C_X = u_{rel}^2/u^2 (C_L cos \alpha + C_D sin \alpha) CX=urel2/u2(CLcosα+CDsinα)
C L C_L CL coefficient of lift, C D C_D CD coefficient of drag
在这里插入图片描述
note: 1 / 2 ρ s u 2 C X = 1 / 2 ρ s u r e l 2 C L c o s α + 1 / 2 ρ s u r e l 2 C D s i n α 1/2 \rho s u^2C_X = 1/2 \rho s u_{rel}^2 C_L cos \alpha + 1/2 \rho s u_{rel}^2 C_D sin \alpha 1/2ρsu2CX=1/2ρsurel2CLcosα+1/2ρsurel2CDsinα
note: α \alpha α counterclockwise is positive
for small α \alpha α, − α = t a n − 1 ( x ′ / u ) ≈ x ′ / u - \alpha = tan^{-1} (x'/u) \approx x'/u α=tan1(x/u)x/u u ≈ u r e l u \approx u_{rel} uurel
C X = C L c o s α + C D s i n α C_X = C_L cos \alpha + C_D sin \alpha CX=CLcosα+CDsinα
Taylor expansion, C X ( α ) = C X ( α ) ∣ α = 0 + ∂ C X ∂ α ∣ α = 0 α C_X(\alpha) = C_X(\alpha) |_{\alpha = 0} + \frac{\partial C_X}{\partial \alpha}|_{\alpha = 0} \alpha CX(α)=CX(α)α=0+αCXα=0α
C X ( α ) = ( C L c o s α + C D s i n α ) ∣ α = 0 + ∂ C X ∂ α ∣ α = 0 ( − x ′ / u ) C_X(\alpha) = (C_L cos \alpha + C_D sin \alpha) |_{\alpha = 0} + \frac{\partial C_X}{\partial \alpha}|_{\alpha = 0} (-x'/u) CX(α)=(CLcosα+CDsinα)α=0+αCXα=0(x/u)
C X ( α ) = C L ∣ α = 0 + ∂ C X ∂ α ∣ α = 0 ( − x ′ / u ) C_X(\alpha) = C_L|_{\alpha = 0}+ \frac{\partial C_X}{\partial \alpha}|_{\alpha = 0} (-x'/u) CX(α)=CLα=0+αCXα=0(x/u)
f = 1 / 2 ρ u 2 s ( C L ∣ α = 0 + ∂ C X ∂ α ∣ α = 0 ( − x ′ / u ) ) f= 1/2 \rho u^2 s (C_L|_{\alpha = 0}+ \frac{\partial C_X}{\partial \alpha}|_{\alpha = 0} (-x'/u)) f=1/2ρu2s(CLα=0+αCXα=0(x/u))
m x ′ ′ + ( c + 1 / 2 ρ u s ∂ C X ∂ α ∣ α = 0 ) x ′ + k x = 1 / 2 ρ u 2 s C L ∣ α = 0 mx'' + (c+ 1/2\rho us\frac{\partial C_X}{\partial \alpha}|_{\alpha = 0})x' + kx = 1/2 \rho u^2 s C_L|_{\alpha = 0} mx+(c+1/2ρusαCXα=0)x+kx=1/2ρu2sCLα=0

when ( c + 1 / 2 ρ u s ∂ C X ∂ α ∣ α = 0 ) < 0 (c+ 1/2\rho us\frac{\partial C_X}{\partial \alpha}|_{\alpha = 0})<0 (c+1/2ρusαCXα=0)<0, system is unstable

source term


在这里插入图片描述
A s p e c t r a t i o = s 2 / A Aspect ratio = s^2/A Aspectratio=s2/A


fluid flow
gallop

equations of motion for an airfoil using Lagrange’s equations

在这里插入图片描述
two DoF system: plunge( flap), angle of attack
T = 1 / 2 m ( h ′ − e α ′ ) 2 + 1 / 2 J C G α ′ 2 T = 1/2 m(h' - e \alpha')^2 + 1/2 J_{CG} \alpha'^2 T=1/2m(heα)2+1/2JCGα2
V = 1 / 2 k h 2 + 1 / 2 k t α 2 V = 1/2 k h^2 + 1/2 k_t \alpha^2 V=1/2kh2+1/2ktα2
L = T − V L = T-V L=TV
note: CG=central gravity
substitute these eq into Lagrange’s eq: ( L q i ′ ) t − L q i = Q i (L_{q_i'})_t - L_{q_i} =Q_i (Lqi)tLqi=Qi

equations of motion for the nonlinear oscillator

https://blog.csdn.net/qq_37083038/article/details/120607809

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值