HDU 1166 敌兵布阵
HDU 1754 I Hate It
POJ 3468 A Simple Problem with Integers
POJ 3264 Balanced Lineup
线段树应该是学算法里面比较正式的一个数据结构了,他虽然很基础,但是有很多变化和技巧。
线段树一般在logn或者logn方的复杂度内完成区间更新和区间查询。
这篇文章主要介绍了线段树的基础操作,但不是一个教学-_-。
众所周知,线段树的基本操作在于区间加减和区间最值,可以再加多一个区间染色(赋值)。
这三种操作个写一两道题就会对线段树的基础操作——区间分解和打标记(Lazy)有一定的理解。
在我看来标准的线段树分为五个基本函数:
build()
push_up()
push_down()
update()
query()
build:顾名思义就是建树,用递归的方法分解区间
push_up:向上更新,一般在build、update和query中都可能用到,在下放lazy标记后儿子的值更新了,从而可能导致自己的值更新,因此需要用push_up来维护自己的值保证正确
push_down:向下更新,即下放lazy标记
update:根据实际需要,可能是区间加减、区间染色
query:与update对应,查询区间(单点)和,最值等
HDU 1166 敌兵布阵 应该是最裸的题了
要求支持区间加减和区间求和
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#define ll long long
using namespace std;
const int maxn = 500005;
int n;
int a[maxn];
char cmd[10];
struct node
{
int l,r;
ll sum,lazy;
inline int len()
{
return r-l+1;
}
inline int update(int val)
{
lazy += val;
sum += (ll)len()*val;
}
}tree[4*maxn];
void push_up(int id)
{
tree[id].sum = tree[id<<1].sum + tree[id<<1|1].sum;
}
void push_down(int id)
{
ll lazy = tree[id].lazy;
if (lazy==0) return ;
tree[id<<1].update(lazy);
tree[id<<1|1].update(lazy);
tree[id].lazy = 0;
}
void build(int id,int l,int r)
{
tree[id].l = l;
tree[id].r = r;
tree[id].sum = tree[id].lazy = 0;
if(l==r)
{
tree[id].sum = a[l];
return ;
}
int mid = (l+r)>>1;
build(id<<1,l,mid);
build(id<<1|1,mid+1,r);
push_up(id);
}
void update(int id,int l,int r,int val)
{
if(tree[id].l==l && tree[id].r==r)
{
tree[id].update(val);
return ;
}
push_down(id);
int mid = (tree[id].l+tree[id].r)>>1;
if(r<=mid) update(id<<1,l,r,val);
else if (l>mid) update(id<<1|1,l,r,val);
else
{
update(id<<1,l,mid,val);
update(id<<1|1,mid+1,r,val);
}
push_up(id);
}
ll query(int id,int l,int r)
{
if(tree[id].l==l && tree[id].r==r)
{
return tree[id].sum;
}
push_down(id);
int mid = (tree[id].l+tree[id].r)>>1;
if (r<=mid) return query(id<<1,l,r);
else if (l>mid) return query(id<<1|1,l,r);
else
{
return query(id<<1,l,mid) + query(id<<1|1,mid+1,r);
}
}
int main()
{
int t,u,w;
int kase = 0;
scanf("%d",&t);
while(t--)
{
kase++;
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
build(1,1,n);
printf("Case %d:\n",kase);
while(1)
{
scanf("%s",cmd);
if(cmd[0]=='E') break;
scanf("%d%d",&u,&w);
if(cmd[0]=='A') update(1,u,u,w);
else if(cmd[0]=='S') update(1,u,u,-w);
else printf("%d\n",query(1,u,w));
}
}
return 0;
}
然后是 HDU 1754 I Hate It
支持单点更新和区间最值
//也是经典线段树了
//练练模板
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 2e5+5;
int a[maxn];
int n,m;
struct node
{
int l,r;
int maxi;
}tree[4*maxn];
void push_up(int id)
{
tree[id].maxi = max(tree[id<<1].maxi,tree[id<<1|1].maxi);
}
void build(int id,int l,int r)
{
tree[id].l = l;
tree[id].r = r;
tree[id].maxi = 0;
if(l==r)
{
tree[id].maxi = a[l];
return ;
}
int mid = (l+r)>>1;
build(id<<1,l,mid);
build(id<<1|1,mid+1,r);
push_up(id);
}
void push_down(int id)
{
}
void update(int id,int l,int r,int val)
{
if(tree[id].l==l && tree[id].r==r)
{
tree[id].maxi = val;
return ;
}
int mid = (tree[id].l+tree[id].r)>>1;
if(r<=mid) update(id<<1,l,r,val);
else if (l>mid) update(id<<1|1,l,r,val);
else
{
update(id<<1,l,mid,val);
update(id<<1|1,mid+1,r,val);
}
push_up(id);
}
int query(int id,int l,int r)
{
if(l==tree[id].l && r==tree[id].r)
{
return tree[id].maxi;
}
int mid = (tree[id].l+tree[id].r)>>1;
if(r<=mid) return query(id<<1,l,r);
else if(l>mid) return query(id<<1|1,l,r);
else return max(query(id<<1,l,mid),query(id<<1|1,mid+1,r));
}
int main()
{
char cmd[5];
int u,v;
while(~scanf("%d%d",&n,&m))
{
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
build(1,1,n);
for(int i=0;i<m;i++)
{
scanf("%s",cmd);
scanf("%d%d",&u,&v);
if(cmd[0]=='Q') printf("%d\n",query(1,u,v));
else update(1,u,u,v);
}
}
return 0;
}
POJ 3468 A Simple Promblem with Integer
支持区间加法和区间查询
#include<cstdio>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
const int maxn = 1e5+5;
int n,q;
int a[maxn];
char cmd[5];
struct node
{
int l,r;
ll sum,lazy;
inline int mid()
{
return (l+r)>>1;
}
inline void update(int val)
{
lazy += val;
sum += (ll)(r-l+1)*val;
}
}tree[4*maxn];
void push_up(int id)
{
tree[id].sum = tree[id<<1].sum+tree[id<<1|1].sum;
}
void push_down(int id)
{
ll lazy = tree[id].lazy;
if(lazy==0) return;
tree[id<<1].update(lazy);
tree[id<<1|1].update(lazy);
tree[id].lazy = 0;
}
void build(int id,int l,int r)
{
tree[id].l = l;
tree[id].r = r;
tree[id].lazy = tree[id].sum = 0;
if (l==r)
{
tree[id].sum = a[l];
return ;
}
int mid = (l+r)>>1;
build(id<<1,l,mid);
build(id<<1|1,mid+1,r);
push_up(id);
}
void update(int id,int l,int r,int val)
{
if(tree[id].l==l && tree[id].r==r)
{
tree[id].update(val);
return ;
}
push_down(id);
int mid = tree[id].mid();
if(r<=mid) update(id<<1,l,r,val);
else if (l>mid) update(id<<1|1,l,r,val);
else
{
update(id<<1,l,mid,val);
update(id<<1|1,mid+1,r,val);
}
push_up(id);
}
ll query(int id,int l,int r)
{
if(tree[id].l==l && tree[id].r==r)
{
return tree[id].sum;
}
push_down(id);
int mid = tree[id].mid();
if(r<=mid) return query(id<<1,l,r);
else if(l>mid) return query(id<<1|1,l,r);
else return query(id<<1,l,mid)+query(id<<1|1,mid+1,r);
}
int main()
{
int l,r,v;
scanf("%d%d",&n,&q);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
build(1,1,n);
while(q--)
{
scanf("%s",cmd);
if(cmd[0]=='Q')
{
scanf("%d%d",&l,&r);
printf("%lld\n",query(1,l,r));
}
else
{
scanf("%d%d%d",&l,&r,&v);
update(1,l,r,v);
}
}
return 0;
}
区间最值
//区间最大最小
//但忽略了一点剪枝
//如果用全局变量存储当前查询的最大最小值
//把query改成void类型 可以在maxi[id]<maxi && mini[id]>mini 的时候剪掉
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 5e4+5;
int a[maxn<<2];
int maxi[maxn<<2],mini[maxn<<2];
void push_up(int id)
{
maxi[id] = max(maxi[id<<1],maxi[id<<1|1]);
mini[id] = min(mini[id<<1],mini[id<<1|1]);
}
void build(int id,int l,int r)
{
if(l==r)
{
maxi[id] = a[l];
mini[id] = a[l];
return ;
}
int mid = (l+r)>>1;
build(id<<1,l,mid);
build(id<<1|1,mid+1,r);
push_up(id);
}
int querymax(int id,int stl,int str,int l,int r)
{
if(stl==l && str==r)
{
return maxi[id];
}
int mid = (stl+str)>>1;
if(r<=mid) return querymax(id<<1,stl,mid,l,r);
else if (l>mid) return querymax(id<<1|1,mid+1,str,l,r);
else return max(querymax(id<<1,stl,mid,l,mid),querymax(id<<1|1,mid+1,str,mid+1,r));
}
int querymin(int id,int stl,int str,int l,int r)
{
if(stl==l && str==r)
{
return mini[id];
}
int mid = (stl+str)>>1;
if(r<=mid) return querymin(id<<1,stl,mid,l,r);
else if (l>mid) return querymin(id<<1|1,mid+1,str,l,r);
else return min(querymin(id<<1,stl,mid,l,mid),querymin(id<<1|1,mid+1,str,mid+1,r));
}
int main()
{
int n,q;
int l,r;
scanf("%d%d",&n,&q);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
build(1,1,n);
while(q--)
{
scanf("%d%d",&l,&r);
printf("%d\n",querymax(1,1,n,l,r)-querymin(1,1,n,l,r));
}
return 0;
}