数论概论笔记(四)同余问题

同余式提供了一种描述整除性质的简便方式。事实上,同余式使得整除性理论非常类似与方程理论

如果m整除a-b,我们就说a与b模m同余并记之为 a ≡ b ( m o d    m ) a\equiv b(mod\;m) ab(modm)
特别的,如果a除以m得余数r,则a与r模m同余。注意余数满足 0 ≤ r < m 0\leq r \lt m 0r<m,因而每个整数必与0~m-1之间的一个数模m同余

数m叫做同余式的模。具有相同模的同余式在许多方面表现得很像通常的等式。例如,如果
a 1 ≡ b 1 ( m o d    m ) 且 a 2 ≡ b 2 ( m o d    m ) a_1\equiv b_1(mod\; m)且a_2\equiv b_2(mod\; m) a1b1(modm)a2b2(modm)
a 1 ± a 2 ≡ b 1 ± b 2 ( m o d    m ) , a 1 a 2 ≡ b 1 b 2 ( m o d    m ) a_1\pm a_2 \equiv b_1 \pm b_2 (mod\; m),a_1a_2\equiv b_1b_2(mod\; m) a1±a2b1±b2(modm)a1a2b1b2(modm)

但是要注意,用数除同余式并非总是可能的。换句话说,如果 a c ≡ b c ( m o d    m ) ac\equiv bc(mod\; m) acbc(modm),则 a ≡ b ( m o d m ) a\equiv b(mod m) ab(modm)未必成立。但是如果 g c d ( c , m ) = 1 gcd(c,m)=1 gcd(c,m)=1,则可从同余式两边消去c。

以下用几个例子说明可用与解方程相同的方法来解带未知数的同余式。

1、
x + 15 ≡ 5 ( m o d    8 ) x+15\equiv 5(mod\; 8) x+155(mod8)
两边减12得
x ≡ 5 − 12 ≡ − 7 ≡ 1 ( m o d    8 ) x\equiv 5-12 \equiv -7 \equiv 1 (mod\; 8) x51271(mod8)

2、
4 x ≡ 3 ( m

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值