数组、链表存储分析
二叉树
满二叉树:
完全二叉树:
二叉树的遍历
前序遍历:12354
中序遍历:21534
后序遍历:25431
package tree;
/**
* @author : sky
* @version : 1.0
*/
public class BinaryTreeTest {
public static void main(String[] args) {
//先需要创建一棵二叉树
BinaryTree binaryTree=new BinaryTree();
//创建需要的节点
Node root=new Node(1,"宋江");
Node node2=new Node(2,"吴用");
Node node3=new Node(3,"卢俊义");
Node node4=new Node(4,"林冲");
Node node5=new Node(5,"关胜");
//说明:按理说,二叉树应该递归创建,但是目前先手动创建
root.setLeft(node2);
root.setRight(node3);
node3.setRight(node4);
node3.setLeft(node5);
binaryTree.setRoot(root);
//测试
System.out.println("前序遍历");//1234 12354
binaryTree.preOrder();
System.out.println("------------------------");
System.out.println("中序遍历");//2134 21534
binaryTree.infixOrder();
System.out.println("------------------------");
System.out.println("后序遍历");//2431 25431
binaryTree.postOrder();
}
}
//节点类
class Node{
private int no;
private String name;
private Node left;//默认为null
private Node right;//默认为null
public Node(int no, String name) {
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public Node getLeft() {
return left;
}
public void setLeft(Node left) {
this.left = left;
}
public Node getRight() {
return right;
}
public void setRight(Node right) {
this.right = right;
}
@Override
public String toString() {
return "Node{" +
"no=" + no +
", name='" + name + '\'' +
'}';
}
//前序遍历
public void preOrder(){
System.out.println(this);//先输出当前节点,即父节点
//递归向左子树前序遍历
if(this.left!=null){
this.left.preOrder();
}
//递归完了之后会返回根节点
//递归向右子树前序遍历
if(this.right!=null){
this.right.preOrder();
}
}
//中序遍历
public void infixOrder(){
//递归向左子树中序遍历
if(this.left!=null){
this.left.infixOrder();
}
System.out.println(this);//输出当前节点,即父节点
//递归向右子树中序遍历
if(this.right!=null){
this.right.infixOrder();
}
}
//后序遍历
public void postOrder(){
//递归向左子树后序遍历
if(this.left!=null){
this.left.postOrder();
}
//递归向右子树后序遍历
if(this.right!=null){
this.right.postOrder();
}
System.out.println(this);//输出当前节点,即父节点
}
}
//定义二叉树
class BinaryTree{
private Node root;//定义一个根节点
public void setRoot(Node root) {
this.root = root;
}
//前序遍历,二叉树调用前序遍历,真正的方案实现是在节点类实现的
public void preOrder(){
if(this.root!=null){
this.root.preOrder();
}else{
System.out.println("二叉树为空,无法遍历");
}
}
//中序遍历
public void infixOrder(){
if(this.root!=null){
this.root.infixOrder();
}else{
System.out.println("二叉树为空,无法遍历");
}
}
//后序遍历
public void postOrder(){
if(this.root!=null){
this.root.postOrder();
}else{
System.out.println("二叉树为空,无法遍历");
}
}
}
二叉树的查找
package tree;
/**
* @author : sky
* @version : 1.0
*/
public class BinaryTreeTest {
public static void main(String[] args) {
//先需要创建一棵二叉树
BinaryTree binaryTree=new BinaryTree();
//创建需要的节点
Node root=new Node(1,"宋江");
Node node2=new Node(2,"吴用");
Node node3=new Node(3,"卢俊义");
Node node4=new Node(4,"林冲");
Node node5=new Node(5,"关胜");
//说明:按理说,二叉树应该递归创建,但是目前先手动创建
root.setLeft(node2);
root.setRight(node3);
node3.setRight(node4);
node3.setLeft(node5);
binaryTree.setRoot(root);
//测试
System.out.println("前序遍历");//1234 12354
binaryTree.preOrder();
System.out.println("------------------------");
System.out.println("中序遍历");//2134 21534
binaryTree.infixOrder();
System.out.println("------------------------");
System.out.println("后序遍历");//2431 25431
binaryTree.postOrder();
System.out.println("------------------------");
System.out.println();
System.out.println("前序查找");
Node resNode = binaryTree.preOrderSearch1(5);//no==5,比较了4次
if(resNode!=null){
System.out.println("找到了,查找结果:"+resNode);
}else {
System.out.println("没有找到!");
}
System.out.println("------------------------");
System.out.println("中序查找");
resNode = binaryTree.infixOrderSearch1(5);//no==5,比较了3次
if(resNode!=null){
System.out.println("找到了,查找结果:"+resNode);
}else {
System.out.println("没有找到!");
}
System.out.println("------------------------");
System.out.println("后序查找");
resNode = binaryTree.postOrderSearch1(5);//no==5,比较了2次
if(resNode!=null){
System.out.println("找到了,查找结果:"+resNode);
}else {
System.out.println("没有找到!");
}
}
}
//节点类
class Node{
private int no;
private String name;
private Node left;//默认为null
private Node right;//默认为null
public Node(int no, String name) {
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public Node getLeft() {
return left;
}
public void setLeft(Node left) {
this.left = left;
}
public Node getRight() {
return right;
}
public void setRight(Node right) {
this.right = right;
}
@Override
public String toString() {
return "Node{" +
"no=" + no +
", name='" + name + '\'' +
'}';
}
//前序遍历
public void preOrder(){
System.out.println(this);//先输出当前节点,即父节点
//递归向左子树前序遍历
if(this.left!=null){
this.left.preOrder();
}
//递归完了之后会返回根节点
//递归向右子树前序遍历
if(this.right!=null){
this.right.preOrder();
}
}
//中序遍历
public void infixOrder(){
//递归向左子树中序遍历
if(this.left!=null){
this.left.infixOrder();
}
System.out.println(this);//输出当前节点,即父节点
//递归向右子树中序遍历
if(this.right!=null){
this.right.infixOrder();
}
}
//后序遍历
public void postOrder(){
//递归向左子树后序遍历
if(this.left!=null){
this.left.postOrder();
}
//递归向右子树后序遍历
if(this.right!=null){
this.right.postOrder();
}
System.out.println(this);//输出当前节点,即父节点
}
/**
* 前序遍历查找
* @param no 需要查找的节点
* @return 如果找到返回该节点,如果没有找到,返回null
*/
public Node preOrderSearch(int no){
System.out.println("进入前序查找");
//比较当前节点是不是
if(this.no==no){
return this;
}
//1.判断左子节点是否为空,如果不为空,则递归前序查找
//2.如果左递归前序查找,找到节点则返回
Node resNode=null;
if(this.left!=null){
resNode =this.left.preOrderSearch(no);
}
if(resNode!=null){//如果这个结果节点不为空,说明左子树找到了
return resNode;
}
//3.左子树没有找到,则要判断当前节点的右子节点是否为空,如果不为空,则继续右递归查找
if(this.right!=null){
resNode=this.right.preOrderSearch(no);
}
return resNode;//这个时候不管找没找到都必须返回
}
//中序遍历查找
public Node infixOrderSearch(int no){
Node resNode=null;
//判断当前节点的左子节点是否为空,如果不为空,递归中序查找
if(this.left!=null){
resNode=this.left.infixOrderSearch(no);
}
if(resNode!=null){
return resNode;
}
System.out.println("进入中序查找");
//左子树没有找到,和当前节点进行比较
if(this.no==no){
return this;
}
//否则向右进行中序查找
if(this.right!=null){
resNode=this.right.infixOrderSearch(no);
}
return resNode;
}
//后序遍历查找
public Node postOrderSearch(int no){
//先判断当前节点的左子节点是否为空,如果不为空则递归后续查找
Node resNode=null;
if(this.left!=null){
resNode=this.left.postOrderSearch(no);
}
if(resNode!=null){//说明在左子树找到
return resNode;
}
//如果左子树没有找到,则向右递归查找
if(this.right!=null){
resNode=this.right.postOrderSearch(no);
}
if(resNode!=null){
return resNode;
}
System.out.println("进入后序查找");
//如果左右子树都没有找到
if(this.no==no){
return this;
}
return resNode;
}
}
//定义二叉树
class BinaryTree{
private Node root;//定义一个根节点
public void setRoot(Node root) {
this.root = root;
}
//前序遍历,二叉树调用前序遍历,真正的方案实现是在节点类实现的
public void preOrder(){
if(this.root!=null){
this.root.preOrder();
}else{
System.out.println("二叉树为空,无法遍历");
}
}
//中序遍历
public void infixOrder(){
if(this.root!=null){
this.root.infixOrder();
}else{
System.out.println("二叉树为空,无法遍历");
}
}
//后序遍历
public void postOrder(){
if(this.root!=null){
this.root.postOrder();
}else{
System.out.println("二叉树为空,无法遍历");
}
}
//前序查找
public Node preOrderSearch1(int no){
if(root!=null){
return root.preOrderSearch(no);
}
return null;
}
//中序查找
public Node infixOrderSearch1(int no){
if(root!=null){
return root.infixOrderSearch(no);
}
return null;
}
//后序查找
public Node postOrderSearch1(int no){
if(root!=null){
return root.postOrderSearch(no);
}
return null;
}
}
二叉树删除节点
单向表要删除节点的话只能找到他的前一个节点
package tree;
/**
* @author : sky
* @version : 1.0
*/
public class BinaryTreeTest {
public static void main(String[] args) {
//先需要创建一棵二叉树
BinaryTree binaryTree=new BinaryTree();
//创建需要的节点
Node root=new Node(1,"宋江");
Node node2=new Node(2,"吴用");
Node node3=new Node(3,"卢俊义");
Node node4=new Node(4,"林冲");
Node node5=new Node(5,"关胜");
//说明:按理说,二叉树应该递归创建,但是目前先手动创建
root.setLeft(node2);
root.setRight(node3);
node3.setRight(node4);
node3.setLeft(node5);
binaryTree.setRoot(root);
//测试
System.out.println("前序遍历");//1234 12354
binaryTree.preOrder();
System.out.println("------------------------");
//删除节点
binaryTree.deleteNode(3);
System.out.println("删除后");
binaryTree.preOrder();//1234
}
}
//节点类
class Node{
private int no;
private String name;
private Node left;//默认为null
private Node right;//默认为null
public Node(int no, String name) {
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public Node getLeft() {
return left;
}
public void setLeft(Node left) {
this.left = left;
}
public Node getRight() {
return right;
}
public void setRight(Node right) {
this.right = right;
}
@Override
public String toString() {
return "Node{" +
"no=" + no +
", name='" + name + '\'' +
'}';
}
//递归删除节点,如果叶子节点,直接删除,如果不是,则删除子树
public void deleteNode(int no){
//如果左子节点不为空,且是要删除的节点
if(this.left!=null && this.left.no==no){
this.left=null;
return;
}
//如果右子节点不为空,且是要删除的节点
if(this.right!=null && this.right.no==no){
this.right=null;
return;
}
//没有删除掉的话,左子树递归删除
if(this.left!=null){
this.left.deleteNode(no);
}
//没有删除掉的话,右子树递归删除
if(this.right!=null){
this.right.deleteNode(no);
}
}
}
//定义二叉树
class BinaryTree{
private Node root;//定义一个根节点
public void setRoot(Node root) {
this.root = root;
}
//删除节点
public void deleteNode(int no){
//首先判断根节点是否为空
if(root!=null){
//这里得判断root节点是否就是需要删除的节点
if(root.getNo()==no){
root=null;
}else{
//递归删除
root.deleteNode(no);
}
}else{
System.out.println("空树,不能删除");
}
}
}
顺序存储二叉树
package tree;
/**
* @author : sky
* @version : 1.0
*/
public class ArrBinaryTreeDemo {
public static void main(String[] args) {
int[] arr={1,2,3,4,5,6,7};
//创建一个ArrBinaryTree
ArrBinaryTree arrBinaryTree = new ArrBinaryTree(arr);
arrBinaryTree.preOrder();//1245367
arrBinaryTree.infixOrder();//4251637
arrBinaryTree.postOrder();//4526731
}
}
//编写一个类,实现顺序存储二叉树
class ArrBinaryTree{
private int[] arr;//存储数据节点的数组
public ArrBinaryTree(int[] arr) {
this.arr = arr;
}
//重载preOrder
public void preOrder(){
this.preOrder(0);
}
//编写一个方法,完成顺序存储二叉树的前序遍历
/**
*
* @param index 表示数组的下标
*/
public void preOrder(int index){
//如果数组为空或者数组arr.length==0
if(arr==null||arr.length==0){
System.out.println("数组为空\t");
}
System.out.print(arr[index]+"\t");//输出当前的元素
//向左递归遍历,并保证数组不越界
if(index*2+1<arr.length){
preOrder(index*2+1);
}
//向右递归遍历并保证数组不越界
if(index*2+2<arr.length){
preOrder(index*2+2);
}
}
//中序遍历
public void infixOrder(int index){
if(arr==null||arr.length==0){
System.out.println("数组为空");
}
//向左递归遍历,并保证数组不越界
if(index*2+1<arr.length){
infixOrder(index*2+1);
}
System.out.print(arr[index]+"\t");//输出当前的元素
//向右递归遍历并保证数组不越界
if(index*2+2<arr.length){
infixOrder(index*2+2);
}
}
public void infixOrder(){
this.infixOrder(0);
}
//后序遍历
public void postOrder(int index){
if(arr==null||arr.length==0){
System.out.println("数组为空");
}
//向左递归遍历,并保证数组不越界
if(index*2+1<arr.length){
postOrder(index*2+1);
}
//向右递归遍历并保证数组不越界
if(index*2+2<arr.length){
postOrder(index*2+2);
}
System.out.print(arr[index]+"\t");//输出当前的元素
}
public void postOrder(){
this.postOrder(0);
}
}
线索化二叉树
中序线索化:
package tree;
/**
* @author : sky
* @version : 1.0
*/
public class ThreadBinaryTreeDemo {
public static void main(String[] args) {
//测试中序线索化
threadNode root = new threadNode(1, "tom");
threadNode node2 = new threadNode(3, "jack");
threadNode node3 = new threadNode(6, "smith");
threadNode node4 = new threadNode(8, "mary");
threadNode node5 = new threadNode(10, "kim");
threadNode node6 = new threadNode(14, "timmy");
//二叉树后面递归创建,现在手动创建
root.setLeft(node2);
root.setRight(node3);
node2.setLeft(node4);
node2.setRight(node5);
node3.setLeft(node6);
ThreadBinaryTree threadBinaryTree = new ThreadBinaryTree();
threadBinaryTree.setRoot(root);
threadBinaryTree.infixThreadedNode();
//测试:以10号节点测试
threadNode left = node5.getLeft();
System.out.println("10号节点的前驱节点");
System.out.println(left);//Node{no=3, name='jack'}
System.out.println("10号节点的后继节点");
System.out.println(node5.getRight());//Node{no=1, name='tom'}
}
}
class threadNode{
private int no;
private String name;
private threadNode left;//默认为null
private threadNode right;//默认为null
//说明:规定:
//1.如果leftType==0 表示指向的是左子树,如果leftType==1 表示指向的是前驱节点
//2.如果rightType==0 表示指向的是右子树,如果rightType==1 表示指向的是后继节点
private int leftType;
private int rightType;
public threadNode(int no, String name) {
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public threadNode getLeft() {
return left;
}
public void setLeft(threadNode left) {
this.left = left;
}
public threadNode getRight() {
return right;
}
public void setRight(threadNode right) {
this.right = right;
}
public int getLeftType() {
return leftType;
}
public void setLeftType(int leftType) {
this.leftType = leftType;
}
public int getRightType() {
return rightType;
}
public void setRightType(int rightType) {
this.rightType = rightType;
}
@Override
public String toString() {
return "Node{" +
"no=" + no +
", name='" + name + '\'' +
'}';
}
}
//线索化二叉树
class ThreadBinaryTree{
private threadNode root;//定义一个根节点
//在递归线索化时,pre总是指向前一个节点
private threadNode pre=null;
public void setRoot(threadNode root) {
this.root = root;
}
//中序线索化方法
/**
* @param node 这个node就是当前需要线索化的节点
*/
public void infixThreadedNode(threadNode node){
//如果node==null,不能线索化
if(node==null){
return;
}
//1.先线索化左子树
infixThreadedNode(node.getLeft());
//2.线索化当前节点
//先处理当前节点的前驱节点
//以8节点来理解
//8节点的.left=null,8节点的.leftType=1
if(node.getLeft()==null){
//让当前节点的左指针指向前驱节点
node.setLeft(pre);
//修改当前节点左指针的类型,指向前驱节点
node.setLeftType(1);
}
//理解:本节点的后继结点处理,需要等到本节点为pre时才处理
//处理后继结点
if(pre!=null&&pre.getRight()==null){
//让前驱节点的右指针指向当前节点
pre.setRight(node);
//修改前驱节点的右指针类型
pre.setRightType(1);
}
//!!!每处理一个节点之后,让当前节点是下一个节点的前驱节点
pre=node;
//3.再线索化右子树
infixThreadedNode(node.getRight());
}
//重载threadedNode方法
public void infixThreadedNode(){
this.infixThreadedNode(root);
}
}
后序遍历线索化二叉树需要定义父节点
package tree;
/**
* @author : sky
* @version : 1.0
*/
public class ThreadBinaryTreeDemo {
public static void main(String[] args) {
//测试中序线索化
threadNode root = new threadNode(1, "tom");
threadNode node2 = new threadNode(3, "jack");
threadNode node3 = new threadNode(6, "smith");
threadNode node4 = new threadNode(8, "mary");
threadNode node5 = new threadNode(10, "kim");
threadNode node6 = new threadNode(14, "timmy");
//二叉树后面递归创建,现在手动创建
root.setLeft(node2);
root.setRight(node3);
node2.setLeft(node4);
node2.setRight(node5);
node3.setLeft(node6);
ThreadBinaryTree threadBinaryTree = new ThreadBinaryTree();
threadBinaryTree.setRoot(root);
//threadBinaryTree.infixThreadedNode();
//threadBinaryTree.preThreadedNode();
threadBinaryTree.postThreadedNode();
//测试:以10号节点测试
threadNode left = node5.getLeft();
System.out.println("10号节点的前驱节点");
System.out.println(left);//Node{no=3, name='jack'}
System.out.println("10号节点的后继节点");
System.out.println(node5.getRight());//Node{no=1, name='tom'}
System.out.println("----------------------");
System.out.println("线索化遍历:");
//threadBinaryTree.infixThreadedList();//8 3 10 1 14 6
//threadBinaryTree.preThreadedList();
//threadBinaryTree.postThreadedList(root);
}
}
class threadNode{
private int no;
private String name;
private threadNode left;//默认为null
private threadNode right;//默认为null
//说明:规定:
//1.如果leftType==0 表示指向的是左子树,如果leftType==1 表示指向的是前驱节点
//2.如果rightType==0 表示指向的是右子树,如果rightType==1 表示指向的是后继节点
private int leftType;
private int rightType;
public threadNode(int no, String name) {
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public threadNode getLeft() {
return left;
}
public void setLeft(threadNode left) {
this.left = left;
}
public threadNode getRight() {
return right;
}
public void setRight(threadNode right) {
this.right = right;
}
public int getLeftType() {
return leftType;
}
public void setLeftType(int leftType) {
this.leftType = leftType;
}
public int getRightType() {
return rightType;
}
public void setRightType(int rightType) {
this.rightType = rightType;
}
@Override
public String toString() {
return "Node{" +
"no=" + no +
", name='" + name + '\'' +
'}';
}
}
//线索化二叉树
class ThreadBinaryTree{
private threadNode root;//定义一个根节点
//在递归线索化时,pre总是指向前一个节点
private threadNode pre=null;
public void setRoot(threadNode root) {
this.root = root;
}
//中序线索化方法
/**
* @param node 这个node就是当前需要线索化的节点
*/
public void infixThreadedNode(threadNode node){
//如果node==null,不能线索化
if(node==null){
return;
}
//1.先线索化左子树
infixThreadedNode(node.getLeft());
//2.线索化当前节点
//先处理当前节点的前驱节点
//以8节点来理解
//8节点的.left=null,8节点的.leftType=1
if(node.getLeft()==null){
//让当前节点的左指针指向前驱节点
node.setLeft(pre);
//修改当前节点左指针的类型,指向前驱节点
node.setLeftType(1);
}
//理解:本节点的后继结点处理,需要等到本节点为pre时才处理
//处理后继结点
if(pre!=null&&pre.getRight()==null){
//让前驱节点的右指针指向当前节点
pre.setRight(node);
//修改前驱节点的右指针类型
pre.setRightType(1);
}
//!!!每处理一个节点之后,让当前节点是下一个节点的前驱节点
pre=node;
//3.再线索化右子树
infixThreadedNode(node.getRight());
}
//重载threadedNode方法
public void infixThreadedNode(){
this.infixThreadedNode(root);
}
//遍历中序线索化树
public void infixThreadedList(){
//定义一个变量,存储当前遍历的节点
threadNode node=root;
while(node!=null){
//循环找到leftType==1的节点,第一个找到的就是8节点
//后面随着遍历变化而变化,当left=1时,说明该节点是按照线索化处理后的有效节点
while(node.getLeftType()==0){
node=node.getLeft();
}
//打印当前节点
System.out.println(node);
//如果当前节点的右指针指向的是后继节点,就一直输出
while(node.getRightType()==1){
//获取到当前节点的后继节点
node=node.getRight();
System.out.println(node);
}
//如果不等于1就替换遍历的节点
node=node.getRight();
}
}
public void preThreadedNode(threadNode node){
//如果node==null,不能线索化
if(node==null){
return;
}
//1.线索化当前节点
if(node.getLeft()==null){
node.setLeft(pre);
node.setLeftType(1);
}
//处理后继结点
if(pre!=null&&pre.getRight()==null){
pre.setRight(node);
pre.setRightType(1);
}
//!!!每处理一个节点之后,让当前节点是下一个节点的前驱节点
pre=node;
//只有当节点没有线索化才递归,不然会陷入死循环
//2.先线索化左子树
if(node.getLeftType()==0){
preThreadedNode(node.getLeft());
}
//3.再线索化右子树
if(node.getRightType()==0){
preThreadedNode(node.getRight());
}
}
//重载threadedNode方法
public void preThreadedNode(){
this.preThreadedNode(root);
}
//遍历前序线索化树
public void preThreadedList(){
//定义一个变量,存储当前遍历的节点
threadNode node=root;
while(node!=null){
//打印当前节点
System.out.println(node);
if(node.getLeftType()==0){
node=node.getLeft();
}else {
node=node.getRight();
}
}
}
public void postThreadedNode(threadNode node){
//如果node==null,不能线索化
if(node==null){
return;
}
//1.先线索化左子树
postThreadedNode(node.getLeft());
//2.再线索化右子树
postThreadedNode(node.getRight());
//3.线索化当前节点
if(node.getLeft()==null){
node.setLeft(pre);
node.setLeftType(1);
}
//处理后继结点
if(pre!=null&&pre.getRight()==null){
pre.setRight(node);
pre.setRightType(1);
}
//!!!每处理一个节点之后,让当前节点是下一个节点的前驱节点
pre=node;
}
//重载threadedNode方法
public void postThreadedNode(){
this.postThreadedNode(root);
}
}
树结构的应用
堆排序
见chapter5
package paixu;
import java.util.Arrays;
/**
* @author : sky
* @version : 1.0
*/
public class HeapSort {
public static void main(String[] args) {
//数组进行升序排序
int[] arr={4,6,8,5,9};
heapSort(arr);
}
//堆排序的方法
public static void heapSort(int[] arr){
int temp=0;
System.out.println("堆排序");
//分步完成
/*adjustHeap(arr,1,arr.length);
System.out.println(Arrays.toString(arr));//[4, 9, 8, 5, 6]
adjustHeap(arr,0,arr.length);
System.out.println(Arrays.toString(arr));//[9, 6, 8, 5, 4]*/
//最终代码
//将无序序列构建成一个大顶堆, 第一个非叶子节点的值为arr.length/2-1
for (int i = arr.length/2-1; i >=0 ; i--) {
adjustHeap(arr,i,arr.length);
}
//将堆顶元素与末尾元素交换,最大值放到数组最后
for (int j = arr.length-1; j >0 ; j--) {
//交换
temp=arr[j];
arr[j]=arr[0];
arr[0]=temp;
adjustHeap(arr,0,j);
}
System.out.println(Arrays.toString(arr));
}
//将一个数组 (二叉树),调整成为一个大顶堆
/**
* 功能:完成将以i对应的非叶子节点的树,调整成大顶堆,即图解中的步骤一(2)
* 即将{4,6,8,5,9}=> i=1 => 第一次调整为{4,9,8,5,6};
* i=0 => 再次调整为 {9,6,8,5,4};
* @param arr 待调整的数组
* @param i 非叶子节点在数组中的索引
* @param length 表示对多少个元素进行调整,length在逐渐减少
*/
public static void adjustHeap(int[] arr,int i,int length){
int temp=arr[i];//先取出当前元素的值,保存在临时变量
//开始调整
//k是i节点的左子节点
for (int k = i*2+1; k <length ; k=k*2+1) {
if(k+1<length && arr[k]<arr[k+1]){//说明左子节点的值小于右子节点的值
k++;//k指向右子节点
}
if(arr[k]>temp){//如果子节点大于父节点
arr[i]=arr[k];//把较大的值付给当前的节点
i=k;//!!!然后让i指向k,继续循环比较
}else{
break;//因为是从最后一个非叶子节点走的,所以他之下的都是小的
}
}
//当for循环结束后,我们已经将以i为父节点的树的最大值,放在了最顶上,即i的位置,此时是局部调整
arr[i]=temp;//将temp的值放到调整后的位置
}
}
哈夫曼树
构建哈夫曼树
一般左子节点指向值较大的,右子节点指向值较小的
WPL=29x1+13x3+7x3+8x3+6x4+1x5+3x5=157
手动创建的时候注意,大的放右边,小的放左边
package huffmantree;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
/**
* @author : sky
* @version : 1.0
*/
public class HuffmanTreeDemo {
public static void main(String[] args) {
int[] arr={13,7,8,3,29,6,1};
Node root = createHuffmanTree(arr);
preOrder(root);//67 29 38 15 7 8 23 10 4 1 3 6 13
}
//创建哈夫曼树的方法
/**
* @param arr 需要创建成哈夫曼树的数组
* @return 返回哈夫曼树的根节点
*/
public static Node createHuffmanTree(int[] arr){
//1.为了操作方便,遍历arr数组
//2.将arr每个元素构建成一个Node
//3.将每个Node元素放入到ArrayList中(便于管理)
List<Node> nodes=new ArrayList<>();
for(int value :arr){
nodes.add(new Node(value));
}
//循环处理
while(nodes.size()>1){//当只剩下一个节点时,就可以不循环处理
Collections.sort(nodes);
Node leftNode=nodes.get(0);
Node rightNode=nodes.get(1);
Node parent=new Node(leftNode.value + rightNode.value);
parent.left=leftNode;
parent.right=rightNode;
nodes.remove(leftNode);
nodes.remove(rightNode);
nodes.add(parent);
}
//返回哈夫曼树的根节点root节点
return nodes.get(0);
//排序:从小到大
/*Collections.sort(nodes);
System.out.println(nodes);*/
/*//取出权值最小的两棵二叉树
//1.取出权值最小的两个节点(二叉树)
Node leftNode=nodes.get(0);
Node rightNode=nodes.get(1);
//2.构建一棵新的二叉树
Node parent=new Node(leftNode.value + rightNode.value);
parent.left=leftNode;
parent.right=rightNode;
//3.从ArrayList中删除处理过的二叉树
nodes.remove(leftNode);
nodes.remove(rightNode);
//4.将parent加入到nodes中
nodes.add(parent);
Collections.sort(nodes);
System.out.println("第一次处理后:"+nodes);*/
}
//哈夫曼树前序遍历
public static void preOrder(Node root){
if(root!=null){
root.preOrder();
}else{
System.out.println("空树");
}
}
}
//创建节点类
//为了让Node对象对象支持排序 使用Collections集合排序,让Node实现Comparable接口
class Node implements Comparable<Node>{
int value;//节点权值
Node left;//指向左子节点
Node right;//指向右子节点
public Node(int value) {
this.value = value;
}
@Override
public String toString() {
return "Node{" +
"value=" + value +
'}';
}
@Override
public int compareTo(Node o) {//注意:使用sort方法必须实现
//表示从小到大排序
return this.value-o.value;
//表示从大到小排序 return -(this.value-o.value);
}
//前序遍历
public void preOrder(){
System.out.println(this);
if(this.left!=null){
this.left.preOrder();
}
if(this.right!=null){
this.right.preOrder();
}
}
}
哈夫曼编码
哈夫曼编码是无损处理的,即无损压缩,解压不会出错
数据压缩(编码)
程序中间反码补码说明
package huffmancode;
import java.util.*;
/**
* @author : sky
* @version : 1.0
*/
public class HuffmanCode {
public static void main(String[] args) {
String content="i like like like java do you like a java";
byte[] contentBytes = content.getBytes();
System.out.println(contentBytes.length);//40
/*List<Node> nodes = getNodes(contentBytes);
System.out.println(nodes);
System.out.println("哈夫曼树:");
Node huffmanTreeRoot = createHuffmanTree(nodes);
preOrder(huffmanTreeRoot);
//是否生成了对应的哈夫曼编码
Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);
System.out.println("生成的哈夫曼编码表:"+ huffmanCodes);
//{32=01, 97=100, 100=11000, 117=11001, 101=1110,
// 118=11011, 105=101, 121=11010, 106=0010, 107=1111, 108=000, 111=0011}
byte[] zip = zip(contentBytes, huffmanCodes);
System.out.println(Arrays.toString(zip));//17*/
//发送哈夫曼编码之后的数组
byte[] huffmanCodeBytes = huffmanZip(contentBytes);
System.out.println(Arrays.toString(huffmanCodeBytes));
System.out.println(huffmanCodeBytes.length);
}
/**
* //使用一个方法将前面的方法封装起来,方便调用
* @param bytes 原始的字符串对应的字节数组
* @return 经过哈夫曼编码处理后的字节数组,即压缩后的字节数组
*/
private static byte[] huffmanZip(byte[] bytes){
//第一步 :把bytes都变成Node对象,并放入集合中
List<Node> nodes = getNodes(bytes);
//第二步:创建哈夫曼树
Node huffmanTreeRoot = createHuffmanTree(nodes);
//第三步:生成对应的哈夫曼编码(根据哈夫曼树来创建)
Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);
//第四步:返回哈夫曼编码的字节数组
byte[] huffmanCodeBytes = zip(bytes, huffmanCodes);
return huffmanCodeBytes;
}
/**
*
* @param bytes 接收一个字节数组
* @return 返回一个List 形式 node【data=97,weight=5】
*/
private static List<Node> getNodes(byte[] bytes){
//1.先创建一个ArrayList
List<Node> nodes=new ArrayList<>();
//2.遍历bytes,统计并存储每一个byte出现的次数---->map[key,value]
Map<Byte, Integer> counts = new HashMap<>();
for(byte b:bytes){
Integer count=counts.get(b);
if(count==null){
counts.put(b,1);
}else{
counts.put(b,count+1);
}
}
//3.把每个键值对转成一个node对象,并加入到nodes集合中
for(Map.Entry<Byte,Integer> entry:counts.entrySet()){
nodes.add(new Node(entry.getKey(),entry.getValue()));
}
return nodes;
}
//通过List,创建对应的哈夫曼树
private static Node createHuffmanTree(List<Node> nodes){
while(nodes.size()>1){
//排序:从小到大
Collections.sort(nodes);
Node leftNode=nodes.get(0);
Node rightNode=nodes.get(1);
//创建一棵新的二叉树,没有data,只有权值
Node parent=new Node(null,leftNode.weight+rightNode.weight);
parent.left=leftNode;
parent.right=rightNode;
//将处理过的移除
nodes.remove(leftNode);
nodes.remove(rightNode);
//加入
nodes.add(parent);
}
return nodes.get(0);
}
//生成的哈夫曼树对应的哈夫曼编码
//思路:1.将哈夫曼编码表放在Map<Byte,String> 形式 32-01,97-100
static Map<Byte,String> huffmanCodes=new HashMap<>();
//2.在生产哈夫曼编码表时,需要去拼接路径,定义一个StringBuilder存储某个叶子节点的路径
static StringBuilder stringBuilder=new StringBuilder();
/**
* 功能:将传入的node节点的所有叶子节点的哈夫曼编码得到,并存放到huffmanCodes集合中
* @param node 传入的节点
* @param code 路径:左 0 右 1
* @param stringBuilder 用来拼接路径
*/
private static void getCodes(Node node,String code,StringBuilder stringBuilder){
StringBuilder stringBuilder2 = new StringBuilder(stringBuilder);
//将code加入到stringBuilder2
stringBuilder2.append(code);
if(node!=null){//如果node==null不处理
//判断当前node是叶子节点还是非叶子节点
if(node.data==null){//非叶子节点
//递归处理
//向左处理
getCodes(node.left,"0",stringBuilder2);
//向右递归
getCodes(node.right,"1",stringBuilder2);
}else{//说明是叶子节点
//表示找到了某个叶子节点最后
huffmanCodes.put(node.data,stringBuilder2.toString());
}
}
}
//为了调用方便,重载一些
private static Map<Byte,String> getCodes(Node root){
if(root==null){
return null;
}
//处理root左子树
getCodes(root.left,"0",stringBuilder);
//处理root右子树
getCodes(root.right,"1",stringBuilder);
return huffmanCodes;
}
/**
* 编写一个方法,将字符串对应的byte[]数组,通过生成的哈夫曼编码表,返回一个哈夫曼编码处理后的byte[]数组
* @param bytes 原始的字符串对应的byte[]
* @param huffmanCodes 生成的哈夫曼编码map
* @return 返回哈夫曼编码处理后的byte[]
* String content="i like like like java do you like a java";
* 传入的是:byte[] contentBytes = content.getBytes();
* 返回的是字符串"1010100010........"对应的byte[] 8位对应一个byte,放入到huffmanCodesBytes中
* huffmanCodesBytes[0] =10101000(补码)==》真实byte里的数是[10101000-> 10101000-1 -> 10100111(反码) ->11011000]
* 即huffmanCodesBytes[0]=-88
*/
private static byte[] zip(byte[] bytes,Map<Byte,String> huffmanCodes){
//1.利用 huffmanCodes 将 bytes 转成 哈夫曼编码对应的字符串
StringBuilder stringBuilder = new StringBuilder();
//遍历bytes数组
for(byte b:bytes){
stringBuilder.append(huffmanCodes.get(b));
}
//System.out.println("lll"+stringBuilder);
//1010100010111111110010001011111111001000101111111100100101001101110001110000011011101000111100101000101111111100110001001010011011100
//2.将"1010100...."转成byte[]
//统计返回的byte[] huffmanCodeBytes 长度
//一句话int len=(stringBuilder.length()+7)/8;
int len;
if(stringBuilder.length()%8==0){
len=stringBuilder.length()/8;
}else{
len=stringBuilder.length()/8+1;
}
//创建存储压缩后的byte数组
byte[] huffmanCodeBytes=new byte[len];
int index=0;//记录是第几个byte
for(int i=0;i<stringBuilder.length();i+=8){//因为是每8位对应一个byte,所以步长为8
String strByte;
if(i+8>stringBuilder.length()){//不够8位
strByte=stringBuilder.substring(i);//直接取到最后
}else{
strByte=stringBuilder.substring(i,i+8);
}
//将strByte转成一个byte,放入huffmanCodeBytes数组中
huffmanCodeBytes[index]=(byte)Integer.parseInt(strByte,2);
index++;
}
return huffmanCodeBytes;
}
//前序遍历
public static void preOrder(Node root){
if(root!=null){
root.preOrder();
}
}
}
//创建Node,带数据和权值
class Node implements Comparable<Node>{
Byte data;//存放数据本身(字符),比如'a' =>97 ' '=>32
int weight;//权值,字符出现的次数
Node left;
Node right;
public Node(Byte data, int weight) {
this.data = data;
this.weight = weight;
}
@Override
public int compareTo(Node o) {
//从小到大排序
return this.weight-o.weight;
}
@Override
public String toString() {
return "Node{" +
"data=" + data +
", weight=" + weight +
'}';
}
//前序遍历
public void preOrder(){
System.out.println(this);
if(this.left!=null){
this.left.preOrder();
}
if(this.right!=null){
this.right.preOrder();
}
}
}
数据解压(解码)
package huffmancode;
import java.util.*;
/**
* @author : sky
* @version : 1.0
*/
public class HuffmanCode {
public static void main(String[] args) {
String content="i like like like java do you like a java";
byte[] contentBytes = content.getBytes();
System.out.println(contentBytes.length);//40
/*List<Node> nodes = getNodes(contentBytes);
System.out.println(nodes);
System.out.println("哈夫曼树:");
Node huffmanTreeRoot = createHuffmanTree(nodes);
preOrder(huffmanTreeRoot);
//是否生成了对应的哈夫曼编码
Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);
System.out.println("生成的哈夫曼编码表:"+ huffmanCodes);
//{32=01, 97=100, 100=11000, 117=11001, 101=1110,
// 118=11011, 105=101, 121=11010, 106=0010, 107=1111, 108=000, 111=0011}
byte[] zip = zip(contentBytes, huffmanCodes);
System.out.println(Arrays.toString(zip));//17*/
//发送哈夫曼编码之后的数组
byte[] huffmanCodeBytes = huffmanZip(contentBytes);
System.out.println(Arrays.toString(huffmanCodeBytes));
System.out.println(huffmanCodeBytes.length);
//byteToBitString((byte)-1);//11111111111111111111111111111111
byte[] decode = decode(huffmanCodes, huffmanCodeBytes);
System.out.println(new String(decode));
}
//完成数据的解压
/**
*
* @param huffmanCodes 哈夫曼编码表
* @param huffmanBytes 哈夫曼编码得到的字节数组
* @return 返回的就是原来的字符串对应的数组
*/
private static byte[] decode(Map<Byte,String> huffmanCodes,byte[] huffmanBytes){
//1.先得到huffmanBytes对应的二进制字符串
StringBuilder stringBuilder = new StringBuilder();
//将byte数组转成二进制字符串
for(int i=0;i<huffmanBytes.length;i++){
//判断是不是最后一个字节
boolean flag=(i==huffmanBytes.length-1);
stringBuilder.append(byteToBitString(!flag,huffmanBytes[i]));
}
//把字符串按照指定的哈夫曼编码进行解码
//把哈夫曼编码表进行调换,因为是反向查询
Map<String,Byte> map=new HashMap<>();
for(Map.Entry<Byte,String> entry:huffmanCodes.entrySet()){
map.put(entry.getValue(),entry.getKey());
}
//创建一个集合,存放byte
List<Byte> list=new ArrayList<>();
//i可以理解为一个索引,扫描stringBuilder
for (int i = 0; i <stringBuilder.length();) {
int count=1;//小的计数器
boolean flag=true;
Byte b=null;
while(flag){
//递增的取出key
String key=stringBuilder.substring(i,i+count);//i不动,让count移动,直到匹配到一个字符
b=map.get(key);
if(b==null){//说明没有匹配到
count++;
}else{
//匹配到
flag=false;
}
}
list.add(b);
i += count;//i直接移动到count的位置
}
//当for循环结束后,list中存放了所有的字符
//把list中的数据放入一个byte数组并返回
byte[] b=new byte[list.size()];
for (int i = 0; i <b.length ; i++) {
b[i]=list.get(i);
}
return b;
}
/**
* //思路:1.将huffmanCodeBytes[-88, -65, -56, -65, -56, -65, -55, 77, -57, 6, -24, -14, -117, -4, -60, -90, 28]
* // 转成哈夫曼编码对应的二进制字符串
* //2.二进制字符串对照哈夫曼编码重新转成人能读懂的字符串
* 将byte转成一个二进制的字符串
* @param flag 标识是否需要补高位,true 需要补;false 不需要补高位,如果是最后一个字节无需补高位
* @param b 传入的byte
* @return 返回的应该是b对应的二进制的字符串(注意是按补码返回的)
*/
private static String byteToBitString(boolean flag,byte b){
//使用变量保存b
int temp=b;//将b转成int
//如果是正数,我们还需要补高位
if(flag){
temp |=256;//按位或256 256=1 0000 0000 | 0000 0001 --》1 0000 0001
}
String str = Integer.toBinaryString(temp);//这里返回的是temp对应的二进制的补码
if(flag){
return str.substring(str.length()-8);
}
return str;
}
/**
* //使用一个方法将前面的方法封装起来,方便调用
* @param bytes 原始的字符串对应的字节数组
* @return 经过哈夫曼编码处理后的字节数组,即压缩后的字节数组
*/
private static byte[] huffmanZip(byte[] bytes){
//第一步 :把bytes都变成Node对象,并放入集合中
List<Node> nodes = getNodes(bytes);
//第二步:创建哈夫曼树
Node huffmanTreeRoot = createHuffmanTree(nodes);
//第三步:生成对应的哈夫曼编码(根据哈夫曼树来创建)
Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);
//第四步:返回哈夫曼编码的字节数组
byte[] huffmanCodeBytes = zip(bytes, huffmanCodes);
return huffmanCodeBytes;
}
/**
*
* @param bytes 接收一个字节数组
* @return 返回一个List 形式 node【data=97,weight=5】
*/
private static List<Node> getNodes(byte[] bytes){
//1.先创建一个ArrayList
List<Node> nodes=new ArrayList<>();
//2.遍历bytes,统计并存储每一个byte出现的次数---->map[key,value]
Map<Byte, Integer> counts = new HashMap<>();
for(byte b:bytes){
Integer count=counts.get(b);
if(count==null){
counts.put(b,1);
}else{
counts.put(b,count+1);
}
}
//3.把每个键值对转成一个node对象,并加入到nodes集合中
for(Map.Entry<Byte,Integer> entry:counts.entrySet()){
nodes.add(new Node(entry.getKey(),entry.getValue()));
}
return nodes;
}
//通过List,创建对应的哈夫曼树
private static Node createHuffmanTree(List<Node> nodes){
while(nodes.size()>1){
//排序:从小到大
Collections.sort(nodes);
Node leftNode=nodes.get(0);
Node rightNode=nodes.get(1);
//创建一棵新的二叉树,没有data,只有权值
Node parent=new Node(null,leftNode.weight+rightNode.weight);
parent.left=leftNode;
parent.right=rightNode;
//将处理过的移除
nodes.remove(leftNode);
nodes.remove(rightNode);
//加入
nodes.add(parent);
}
return nodes.get(0);
}
//生成的哈夫曼树对应的哈夫曼编码
//思路:1.将哈夫曼编码表放在Map<Byte,String> 形式 32-01,97-100
static Map<Byte,String> huffmanCodes=new HashMap<>();
//2.在生产哈夫曼编码表时,需要去拼接路径,定义一个StringBuilder存储某个叶子节点的路径
static StringBuilder stringBuilder=new StringBuilder();
/**
* 功能:将传入的node节点的所有叶子节点的哈夫曼编码得到,并存放到huffmanCodes集合中
* @param node 传入的节点
* @param code 路径:左 0 右 1
* @param stringBuilder 用来拼接路径
*/
private static void getCodes(Node node,String code,StringBuilder stringBuilder){
StringBuilder stringBuilder2 = new StringBuilder(stringBuilder);
//将code加入到stringBuilder2
stringBuilder2.append(code);
if(node!=null){//如果node==null不处理
//判断当前node是叶子节点还是非叶子节点
if(node.data==null){//非叶子节点
//递归处理
//向左处理
getCodes(node.left,"0",stringBuilder2);
//向右递归
getCodes(node.right,"1",stringBuilder2);
}else{//说明是叶子节点
//表示找到了某个叶子节点最后
huffmanCodes.put(node.data,stringBuilder2.toString());
}
}
}
//为了调用方便,重载一些
private static Map<Byte,String> getCodes(Node root){
if(root==null){
return null;
}
//处理root左子树
getCodes(root.left,"0",stringBuilder);
//处理root右子树
getCodes(root.right,"1",stringBuilder);
return huffmanCodes;
}
/**
* 编写一个方法,将字符串对应的byte[]数组,通过生成的哈夫曼编码表,返回一个哈夫曼编码处理后的byte[]数组
* @param bytes 原始的字符串对应的byte[]
* @param huffmanCodes 生成的哈夫曼编码map
* @return 返回哈夫曼编码处理后的byte[]
* String content="i like like like java do you like a java";
* 传入的是:byte[] contentBytes = content.getBytes();
* 返回的是字符串"1010100010........"对应的byte[] 8位对应一个byte,放入到huffmanCodesBytes中
* huffmanCodesBytes[0] =10101000(补码)==》真实byte里的数是[10101000-> 10101000-1 -> 10100111(反码) ->11011000]
* 即huffmanCodesBytes[0]=-88
*/
private static byte[] zip(byte[] bytes,Map<Byte,String> huffmanCodes){
//1.利用 huffmanCodes 将 bytes 转成 哈夫曼编码对应的字符串
StringBuilder stringBuilder = new StringBuilder();
//遍历bytes数组
for(byte b:bytes){
stringBuilder.append(huffmanCodes.get(b));
}
//System.out.println("原来的编码"+stringBuilder);
//1010100010111111110010001011111111001000101111111100100101001101110001110000011011101000111100101000101111111100110001001010011011100
//2.将"1010100...."转成byte[]
//统计返回的byte[] huffmanCodeBytes 长度
//一句话int len=(stringBuilder.length()+7)/8;
int len;
if(stringBuilder.length()%8==0){
len=stringBuilder.length()/8;
}else{
len=stringBuilder.length()/8+1;
}
//创建存储压缩后的byte数组
byte[] huffmanCodeBytes=new byte[len];
int index=0;//记录是第几个byte
for(int i=0;i<stringBuilder.length();i+=8){//因为是每8位对应一个byte,所以步长为8
String strByte;
if(i+8>stringBuilder.length()){//不够8位
strByte=stringBuilder.substring(i);//直接取到最后
}else{
strByte=stringBuilder.substring(i,i+8);
}
//将strByte转成一个byte,放入huffmanCodeBytes数组中
huffmanCodeBytes[index]=(byte)Integer.parseInt(strByte,2);
index++;
}
return huffmanCodeBytes;
}
//前序遍历
public static void preOrder(Node root){
if(root!=null){
root.preOrder();
}
}
}
//创建Node,带数据和权值
class Node implements Comparable<Node>{
Byte data;//存放数据本身(字符),比如'a' =>97 ' '=>32
int weight;//权值,字符出现的次数
Node left;
Node right;
public Node(Byte data, int weight) {
this.data = data;
this.weight = weight;
}
@Override
public int compareTo(Node o) {
//从小到大排序
return this.weight-o.weight;
}
@Override
public String toString() {
return "Node{" +
"data=" + data +
", weight=" + weight +
'}';
}
//前序遍历
public void preOrder(){
System.out.println(this);
if(this.left!=null){
this.left.preOrder();
}
if(this.right!=null){
this.right.preOrder();
}
}
}
文件压缩
压缩文件用的哈夫曼编码表是啥?
代码解压文件的时候可能有问题
package huffmancode;
import java.io.*;
import java.util.*;
/**
* @author : sky
* @version : 1.0
*/
public class HuffmanCode {
public static void main(String[] args) {
String content="i like like like java do you like a java";
byte[] contentBytes = content.getBytes();
System.out.println(contentBytes.length);//40
/*List<Node> nodes = getNodes(contentBytes);
System.out.println(nodes);
System.out.println("哈夫曼树:");
Node huffmanTreeRoot = createHuffmanTree(nodes);
preOrder(huffmanTreeRoot);
//是否生成了对应的哈夫曼编码
Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);
System.out.println("生成的哈夫曼编码表:"+ huffmanCodes);
//{32=01, 97=100, 100=11000, 117=11001, 101=1110,
// 118=11011, 105=101, 121=11010, 106=0010, 107=1111, 108=000, 111=0011}
byte[] zip = zip(contentBytes, huffmanCodes);
System.out.println(Arrays.toString(zip));//17*/
//发送哈夫曼编码之后的数组
byte[] huffmanCodeBytes = huffmanZip(contentBytes);
System.out.println(Arrays.toString(huffmanCodeBytes));
System.out.println(huffmanCodeBytes.length);
//byteToBitString((byte)-1);//11111111111111111111111111111111
byte[] decode = decode(huffmanCodes, huffmanCodeBytes);
System.out.println(new String(decode));
//压缩文件的测试
//String srcFile="D://tu.jpg";
//String dstFile="D://dst.zip";
//zipFile(srcFile,dstFile);
//System.out.println("压缩文件成功");
String zipFile="D://dst.zip";
String dstFile="D://src.jpg";
unzipFile(zipFile,dstFile);
System.out.println("解压成功");
}
/**
* 压缩文件的解压
* @param zipFile 准备解压的文件
* @param dstFile 将文件解压到哪里
*/
public static void unzipFile(String zipFile,String dstFile){
//创建文件输入流
FileInputStream fis=null;
ObjectInputStream ois=null;
FileOutputStream fos=null;
try {
fis=new FileInputStream(zipFile);
//普通方式读不到?
ois=new ObjectInputStream(fis);
//读取byte数组
byte[] huffmanBytes =(byte[])ois.readObject();
//读取哈夫曼编码表
Map<Byte,String> huffmanCodes =(Map<Byte,String>)ois.readObject();
//解码
byte[] bytes = decode(huffmanCodes, huffmanBytes);
//将bytes数组写入到目标文件
fos=new FileOutputStream(dstFile);
//写数据到文件中
fos.write(bytes);
} catch (Exception e) {
e.printStackTrace();
}finally {
try {
fos.close();
ois.close();
fis.close();
} catch (Exception e) {
e.printStackTrace();
}
}
}
/**
* 编写方法,将一个文件进行压缩
* @param srcFile 传入的希望压缩的文件的全路径
* @param dstFile 压缩后将压缩文件放到那个目录
*/
public static void zipFile(String srcFile,String dstFile){
//创建文件输入流
FileInputStream fis=null;
FileOutputStream fos=null;
ObjectOutputStream oos=null;
try {
//创建文件输入流
fis= new FileInputStream(srcFile);
//创建一个和源文件大小一样的byte数组
byte[] b=new byte[fis.available()];//available()返回源文件的大小
//读取文件
fis.read(b);
//使用哈夫曼编码,直接对源文件压缩
byte[] huffmanBytes = huffmanZip(b);
//创建文件的输出流,存放压缩文件
fos=new FileOutputStream(dstFile);
//创建一个和文件输出流关联的ObjectOutputStream
oos=new ObjectOutputStream(fos);
oos.writeObject(huffmanBytes);//先把哈夫曼编码后的数组huffmanBytes写入压缩文件
//这里我们以对象流的方式写入哈夫曼编码,是为了以后我们恢复源文件时使用
//注意一定要把哈夫曼编码写入压缩文件
oos.writeObject(huffmanCodes);
}catch (Exception e){
System.out.println(e.getMessage());
}finally {
try {
oos.close();
fos.close();
fis.close();
} catch (Exception e) {
e.printStackTrace();
}
}
}
//完成数据的解压
/**
*
* @param huffmanCodes 哈夫曼编码表
* @param huffmanBytes 哈夫曼编码得到的字节数组
* @return 返回的就是原来的字符串对应的数组
*/
private static byte[] decode(Map<Byte,String> huffmanCodes,byte[] huffmanBytes){
//1.先得到huffmanBytes对应的二进制字符串
StringBuilder stringBuilder = new StringBuilder();
//将byte数组转成二进制字符串
for(int i=0;i<huffmanBytes.length;i++){
//判断是不是最后一个字节
boolean flag=(i==huffmanBytes.length-1);
stringBuilder.append(byteToBitString(!flag,huffmanBytes[i]));
}
//把字符串按照指定的哈夫曼编码进行解码
//把哈夫曼编码表进行调换,因为是反向查询
Map<String,Byte> map=new HashMap<>();
for(Map.Entry<Byte,String> entry:huffmanCodes.entrySet()){
map.put(entry.getValue(),entry.getKey());
}
//创建一个集合,存放byte
List<Byte> list=new ArrayList<>();
//i可以理解为一个索引,扫描stringBuilder
for (int i = 0; i <stringBuilder.length();) {
int count=1;//小的计数器
boolean flag=true;
Byte b=null;
while(flag){
//递增的取出key
String key=stringBuilder.substring(i,i+count);//i不动,让count移动,直到匹配到一个字符
b=map.get(key);
if(b==null){//说明没有匹配到
count++;
}else{
//匹配到
flag=false;
}
}
list.add(b);
i += count;//i直接移动到count的位置
if(i+count>stringBuilder.length()){
String key=stringBuilder.substring(i);
break;
}
}
//当for循环结束后,list中存放了所有的字符
//把list中的数据放入一个byte数组并返回
byte[] b=new byte[list.size()];
for (int i = 0; i <b.length ; i++) {
b[i]=list.get(i);
}
return b;
}
/**
* //思路:1.将huffmanCodeBytes[-88, -65, -56, -65, -56, -65, -55, 77, -57, 6, -24, -14, -117, -4, -60, -90, 28]
* // 转成哈夫曼编码对应的二进制字符串
* //2.二进制字符串对照哈夫曼编码重新转成人能读懂的字符串
* 将byte转成一个二进制的字符串
* @param flag 标识是否需要补高位,true 需要补;false 不需要补高位,如果是最后一个字节无需补高位
* @param b 传入的byte
* @return 返回的应该是b对应的二进制的字符串(注意是按补码返回的)
*/
private static String byteToBitString(boolean flag,byte b){
//使用变量保存b
int temp=b;//将b转成int
//如果是正数,我们还需要补高位
if(flag){
temp |=256;//按位或256 256=1 0000 0000 | 0000 0001 --》1 0000 0001
}
String str = Integer.toBinaryString(temp);//这里返回的是temp对应的二进制的补码
if(flag){
return str.substring(str.length()-8);
}
return str;
}
/**
* //使用一个方法将前面的方法封装起来,方便调用
* @param bytes 原始的字符串对应的字节数组
* @return 经过哈夫曼编码处理后的字节数组,即压缩后的字节数组
*/
private static byte[] huffmanZip(byte[] bytes){
//第一步 :把bytes都变成Node对象,并放入集合中
List<Node> nodes = getNodes(bytes);
//第二步:创建哈夫曼树
Node huffmanTreeRoot = createHuffmanTree(nodes);
//第三步:生成对应的哈夫曼编码(根据哈夫曼树来创建)
Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);
//第四步:返回哈夫曼编码的字节数组
byte[] huffmanCodeBytes = zip(bytes, huffmanCodes);
return huffmanCodeBytes;
}
/**
*
* @param bytes 接收一个字节数组
* @return 返回一个List 形式 node【data=97,weight=5】
*/
private static List<Node> getNodes(byte[] bytes){
//1.先创建一个ArrayList
List<Node> nodes=new ArrayList<>();
//2.遍历bytes,统计并存储每一个byte出现的次数---->map[key,value]
Map<Byte, Integer> counts = new HashMap<>();
for(byte b:bytes){
Integer count=counts.get(b);
if(count==null){
counts.put(b,1);
}else{
counts.put(b,count+1);
}
}
//3.把每个键值对转成一个node对象,并加入到nodes集合中
for(Map.Entry<Byte,Integer> entry:counts.entrySet()){
nodes.add(new Node(entry.getKey(),entry.getValue()));
}
return nodes;
}
//通过List,创建对应的哈夫曼树
private static Node createHuffmanTree(List<Node> nodes){
while(nodes.size()>1){
//排序:从小到大
Collections.sort(nodes);
Node leftNode=nodes.get(0);
Node rightNode=nodes.get(1);
//创建一棵新的二叉树,没有data,只有权值
Node parent=new Node(null,leftNode.weight+rightNode.weight);
parent.left=leftNode;
parent.right=rightNode;
//将处理过的移除
nodes.remove(leftNode);
nodes.remove(rightNode);
//加入
nodes.add(parent);
}
return nodes.get(0);
}
//生成的哈夫曼树对应的哈夫曼编码
//思路:1.将哈夫曼编码表放在Map<Byte,String> 形式 32-01,97-100
static Map<Byte,String> huffmanCodes=new HashMap<>();
//2.在生产哈夫曼编码表时,需要去拼接路径,定义一个StringBuilder存储某个叶子节点的路径
static StringBuilder stringBuilder=new StringBuilder();
/**
* 功能:将传入的node节点的所有叶子节点的哈夫曼编码得到,并存放到huffmanCodes集合中
* @param node 传入的节点
* @param code 路径:左 0 右 1
* @param stringBuilder 用来拼接路径
*/
private static void getCodes(Node node,String code,StringBuilder stringBuilder){
StringBuilder stringBuilder2 = new StringBuilder(stringBuilder);
//将code加入到stringBuilder2
stringBuilder2.append(code);
if(node!=null){//如果node==null不处理
//判断当前node是叶子节点还是非叶子节点
if(node.data==null){//非叶子节点
//递归处理
//向左处理
getCodes(node.left,"0",stringBuilder2);
//向右递归
getCodes(node.right,"1",stringBuilder2);
}else{//说明是叶子节点
//表示找到了某个叶子节点最后
huffmanCodes.put(node.data,stringBuilder2.toString());
}
}
}
//为了调用方便,重载一些
private static Map<Byte,String> getCodes(Node root){
if(root==null){
return null;
}
//处理root左子树
getCodes(root.left,"0",stringBuilder);
//处理root右子树
getCodes(root.right,"1",stringBuilder);
return huffmanCodes;
}
/**
* 编写一个方法,将字符串对应的byte[]数组,通过生成的哈夫曼编码表,返回一个哈夫曼编码处理后的byte[]数组
* @param bytes 原始的字符串对应的byte[]
* @param huffmanCodes 生成的哈夫曼编码map
* @return 返回哈夫曼编码处理后的byte[]
* String content="i like like like java do you like a java";
* 传入的是:byte[] contentBytes = content.getBytes();
* 返回的是字符串"1010100010........"对应的byte[] 8位对应一个byte,放入到huffmanCodesBytes中
* huffmanCodesBytes[0] =10101000(补码)==》真实byte里的数是[10101000-> 10101000-1 -> 10100111(反码) ->11011000]
* 即huffmanCodesBytes[0]=-88
*/
private static byte[] zip(byte[] bytes,Map<Byte,String> huffmanCodes){
//1.利用 huffmanCodes 将 bytes 转成 哈夫曼编码对应的字符串
StringBuilder stringBuilder = new StringBuilder();
//遍历bytes数组
for(byte b:bytes){
stringBuilder.append(huffmanCodes.get(b));
}
//System.out.println("原来的编码"+stringBuilder);
//1010100010111111110010001011111111001000101111111100100101001101110001110000011011101000111100101000101111111100110001001010011011100
//2.将"1010100...."转成byte[]
//统计返回的byte[] huffmanCodeBytes 长度
//一句话int len=(stringBuilder.length()+7)/8;
int len;
if(stringBuilder.length()%8==0){
len=stringBuilder.length()/8;
}else{
len=stringBuilder.length()/8+1;
}
//创建存储压缩后的byte数组
byte[] huffmanCodeBytes=new byte[len];
int index=0;//记录是第几个byte
for(int i=0;i<stringBuilder.length();i+=8){//因为是每8位对应一个byte,所以步长为8
String strByte;
if(i+8>stringBuilder.length()){//不够8位
strByte=stringBuilder.substring(i);//直接取到最后
}else{
strByte=stringBuilder.substring(i,i+8);
}
//将strByte转成一个byte,放入huffmanCodeBytes数组中
huffmanCodeBytes[index]=(byte)Integer.parseInt(strByte,2);
index++;
}
return huffmanCodeBytes;
}
//前序遍历
public static void preOrder(Node root){
if(root!=null){
root.preOrder();
}
}
}
//创建Node,带数据和权值
class Node implements Comparable<Node>{
Byte data;//存放数据本身(字符),比如'a' =>97 ' '=>32
int weight;//权值,字符出现的次数
Node left;
Node right;
public Node(Byte data, int weight) {
this.data = data;
this.weight = weight;
}
@Override
public int compareTo(Node o) {
//从小到大排序
return this.weight-o.weight;
}
@Override
public String toString() {
return "Node{" +
"data=" + data +
", weight=" + weight +
'}';
}
//前序遍历
public void preOrder(){
System.out.println(this);
if(this.left!=null){
this.left.preOrder();
}
if(this.right!=null){
this.right.preOrder();
}
}
}
二叉排序树
package binarysorttree;
/**
* @author : sky
* @version : 1.0
*/
public class BinarySortTreeDemo {
public static void main(String[] args) {
int[] arr={7,3,10,12,5,1,9};
BinarySortTree binarySortTree=new BinarySortTree();
//循环的添加节点到二叉排序树
for (int i = 0; i < arr.length; i++) {
binarySortTree.add(new Node(arr[i]));
}
//中序遍历二叉排序树
binarySortTree.infixOrder();//1 3 5 7 9 10 12
}
}
//创建节点
class Node{
int value;
Node left;
Node right;
public Node(int value) {
this.value = value;
}
@Override
public String toString() {
return "Node{" +
"value=" + value +
'}';
}
//添加节点的方法
//递归的形式添加节点,注意要满足二叉排序树的要求
public void add(Node node){
if(node==null){
return;
}
//判断传入节点的值,和当前子树的根节点的值关系
if(node.value<this.value){
//如果当前节点左子节点为空
if(this.left==null){
this.left=node;
}else{
//递归的向左子树添加
this.left.add(node);
}
}else{//添加节点的值大于当前节点的值
if(this.right==null){
this.right=node;
}else{
//递归的向右子树添加
this.right.add(node);
}
}
}
//中序遍历
public void infixOrder(){
if(this.left!=null){
this.left.infixOrder();
}
System.out.println(this);
if(this.right!=null){
this.right.infixOrder();
}
}
}
//创建二叉排序树
class BinarySortTree{
private Node root;
//添加节点的方法
public void add(Node node){
if(root==null){
root=node;//如果root为空,则直接让root指向node
} else{
root.add(node);
}
}
//中序遍历
public void infixOrder(){
if(root!=null){
root.infixOrder();
}else{
System.out.println("二叉排序树为空,不能遍历");
}
}
}
二叉排序树的删除节点
或者(3)从targetNode的左子树找到最大的节点
package binarysorttree;
/**
* @author : sky
* @version : 1.0
*/
public class BinarySortTreeDemo {
public static void main(String[] args) {
int[] arr={7,3,10,12,5,1,9};
BinarySortTree binarySortTree=new BinarySortTree();
//循环的添加节点到二叉排序树
for (int i = 0; i < arr.length; i++) {
binarySortTree.add(new Node(arr[i]));
}
binarySortTree.add(new Node(0));
//中序遍历二叉排序树
binarySortTree.infixOrder();//1 3 5 7 9 10 12
//测试删除叶子节点
//binarySortTree.deleteNode(2);
System.out.println("-----------------");
//binarySortTree.infixOrder();
//测试删除一棵子树的节点
//binarySortTree.deleteNode(1);
//测试删除有两棵子树的节点
binarySortTree.deleteNode(7);
binarySortTree.infixOrder();
}
}
//创建节点
class Node{
int value;
Node left;
Node right;
public Node(int value) {
this.value = value;
}
@Override
public String toString() {
return "Node{" +
"value=" + value +
'}';
}
//添加节点的方法
//递归的形式添加节点,注意要满足二叉排序树的要求
public void add(Node node){
if(node==null){
return;
}
//判断传入节点的值,和当前子树的根节点的值关系
if(node.value<this.value){
//如果当前节点左子节点为空
if(this.left==null){
this.left=node;
}else{
//递归的向左子树添加
this.left.add(node);
}
}else{//添加节点的值大于(等于)当前节点的值
if(this.right==null){
this.right=node;
}else{
//递归的向右子树添加
this.right.add(node);
}
}
}
//中序遍历
public void infixOrder(){
if(this.left!=null){
this.left.infixOrder();
}
System.out.println(this);
if(this.right!=null){
this.right.infixOrder();
}
}
/**
* 查找要删除的节点
* @param value 希望删除的节点的值
* @return 如果找到返回该节点,否则返回null
*/
public Node search(int value){
if(value==this.value){//找到就是该节点
return this;
}else if(value<this.value){
//如果查找的值小于当前节点,向左子树递归查找
if(this.left==null){
return null;
}
return this.left.search(value);
}else{
if(this.right==null){
return null;
}
return this.right.search(value);
}
}
/**
* 查找要删除节点的父节点
* @param value 要找的节点的值
* @return 返回的是要删除节点的父节点,如果没有返回null
*/
public Node searchParent(int value){
if((this.left!=null&&this.left.value==value)||(this.right!=null&&this.right.value==value)){
return this;
}else{
//如果查找的值小于当前节点,并且当前节点的左子节点不为空
if(value<this.value && this.left!=null){
return this.left.searchParent(value);//向左子树递归查找
}else if(value >= this.value && this.right!=null){
return this.right.searchParent(value);//向右子树递归查找
}else{
return null;//没有找到父节点
}
}
}
}
//创建二叉排序树
class BinarySortTree{
private Node root;
//添加节点的方法
public void add(Node node){
if(root==null){
root=node;//如果root为空,则直接让root指向node
} else{
root.add(node);
}
}
//中序遍历
public void infixOrder(){
if(root!=null){
root.infixOrder();
}else{
System.out.println("二叉排序树为空,不能遍历");
}
}
/**
* 并删除以node为根节点的最小值
* @param node 传入的节点(当作二叉排序树的根节点)
* @return 返回以node为根节点的最小值
*/
public int delRightTreeMin(Node node){
Node target=node;
//循环的查找左子节点,就会找到最小值
while(target.left!=null){
target=target.left;
}
//这时,target指向左子树最小的节点
//删除最小节点
deleteNode(target.value);
return target.value;
}
//找最大值
public int delLeftTreeMax(Node node){
Node target=node;
//循环查找右子节点,找到最大值
while(target.right!=null){
target=target.right;
}
deleteNode(target.value);
return target.value;
}
//查找要删除的节点
public Node search(int value){
if(root==null){
return null;
}else{
return root.search(value);
}
}
//查找要删除节点的父节点
public Node searchParent(int value){
if(root==null){
return null;
}else{
return root.searchParent(value);
}
}
//删除节点
public void deleteNode(int value){
if(root==null){
return;
}else{
//1.先找到要删除的节点targetNode
Node targetNode = search(value);
//如果没有找到要删除的节点
if(targetNode==null){
return;
}
//如果targetNode没有父节点,或当前二叉排序树只有一个节点
if(root.left==null && root.right==null){
root=null;
return;
}
//2.找到targetNode的父节点
Node parent = searchParent(value);
//3.如果要删除的节点是叶子节点
if(targetNode.left==null&&targetNode.right==null){
//判断targetNode是parent的左子节点还是右子节点
if(parent.left!=null && parent.left.value==value){
parent.left=null;
}else if(parent.right!=null && parent.right.value==value){
parent.right=null;
}
//4.删除有两棵子树的节点
}else if(targetNode.left!=null && targetNode.right!=null){
//有两种方式:删除右子树最小值的节点或删除左子树最大值的节点
/*int minVal = delRightTreeMin(targetNode.right);
targetNode.value=minVal;*/
int maxVal=delLeftTreeMax(targetNode.left);
targetNode.value=maxVal;
}else{//5.删除只有一棵子树的节点
//如果要删除的节点有左子节点
if(targetNode.left!=null){
if(parent!=null){
//如果targetNode是parent的左子节点
if(parent.left.value==value){
parent.left=targetNode.left;
}else{//如果targetNode是parent的右子节点
parent.right=targetNode.left;
}
}else{
root=targetNode.left;
}
}else{//如果要删除的节点有右子节点
if(parent!=null){
//如果targetNode是parent的左子节点
if(parent.left.value==value){
parent.left=targetNode.right;
}else{//如果targetNode是parent的右子节点
parent.right=targetNode.right;
}
}else{
root=targetNode.right;
}
}
}
}
}
}
平衡二叉树(AVL树)
左旋转
当右子树的高度比左子树的高度高时,进行左旋转
左旋转的目的:降低右子树的高度
//左旋转的方法
private void leftRotate(){
//创建新的节点,以当前根节点的值创建
Node newNode = new Node(value);
//把新的节点的左子树设置成当前节点的左子树
newNode.left=left;
//把新的节点的右子树设置成当前节点的右子树的左子树
newNode.right=right.left;
//把当前节点的值替换成右子节点的值
value=right.value;
//把当前节点的右子树设置成当前节点右子树的右子树
right=right.right;
//把当前节点的左子树设置为新的节点
left=newNode;
}
右旋转
左子树的高度大于右子树的高度
右旋转:目的是为了降低左子树的高度,从而达到一个平衡
//右旋转的方法
private void rightRotate(){
//以当前节点的值创建一个新节点
Node newNode = new Node(value);
//把新节点的右子树指向当前节点的右子树
newNode.right=right;
//新节点的左子节点指向当前节点的左子节点的右子节点
newNode.left=left.right;
//把当前节点的值改为当前节点左子节点的值
value=left.value;
//把当前节点的左子节点指向当前节点的左子节点的左子节点
left=left.left;
//把当前节点的右子节点指向新的节点
right=newNode;
}
双旋转
全部代码:
package avltree;
/**
* @author : sky
* @version : 1.0
*/
public class AVLTreeDemo {
public static void main(String[] args) {
//int[] arr={4,3,6,5,7,8};
//int[] arr={10,12,8,9,7,6};
int[] arr={10,11,7,6,8,9};
//创建一个avl对象
AVLTree avlTree = new AVLTree();
//添加节点
for (int i = 0; i <arr.length ; i++) {
avlTree.add(new Node(arr[i]));
}
avlTree.infixOrder();
System.out.println("-------------------");
System.out.println("平衡后树的高度:"+avlTree.getRoot().height());
System.out.println("平衡后树的左子树的高度:"+avlTree.getRoot().left.height());
System.out.println("平衡后树的右子树的高度:"+avlTree.getRoot().right.height());
System.out.println(avlTree.getRoot());
System.out.println(avlTree.getRoot().left);
System.out.println(avlTree.getRoot().right);
}
}
class AVLTree{
private Node root;
public Node getRoot() {
return root;
}
//添加节点的方法
public void add(Node node){
if(root==null){
root=node;//如果root为空,则直接让root指向node
} else{
root.add(node);
}
}
//中序遍历
public void infixOrder(){
if(root!=null){
root.infixOrder();
}else{
System.out.println("二叉排序树为空,不能遍历");
}
}
}
//创建节点
class Node{
int value;
Node left;
Node right;
public Node(int value) {
this.value = value;
}
@Override
public String toString() {
return "Node{" +
"value=" + value +
'}';
}
//添加节点的方法
//递归的形式添加节点,注意要满足二叉排序树的要求
public void add(Node node){
if(node==null){
return;
}
//判断传入节点的值,和当前子树的根节点的值关系
if(node.value<this.value){
//如果当前节点左子节点为空
if(this.left==null){
this.left=node;
}else{
//递归的向左子树添加
this.left.add(node);
}
}else{//添加节点的值大于(等于)当前节点的值
if(this.right==null){
this.right=node;
}else{
//递归的向右子树添加
this.right.add(node);
}
}
//当添加完一个节点后,如果 右子树的高度-左子树的高度 >1,左旋转
if(rightHeight()-leftHeight()>1){
//如果当前节点的右子节点的左子树的高度大于右子树的高度
if(right!=null && right.leftHeight()>right.rightHeight()){
//先对右子节点进行右旋转
right.rightRotate();
//在对当前节点进行左旋转
leftRotate();
}else{//否则直接左旋转
leftRotate();
}
return;//必须要,加一个处理一个
}
//当添加完一个节点后,如果 左子树的高度-右子树的高度 >1,右旋转
if(leftHeight()-rightHeight()>1){
//先要判断左子节点的右子树的高度大于左子树的高度
if(left!=null && left.rightHeight()>left.leftHeight()){
//先对当前节点的左节点进行左旋转
left.leftRotate();
//再对当前节点进行右旋转
rightRotate();
}else{//直接进行右旋转即可
rightRotate();
}
}
}
//中序遍历
public void infixOrder(){
if(this.left!=null){
this.left.infixOrder();
}
System.out.println(this);
if(this.right!=null){
this.right.infixOrder();
}
}
//返回当前节点的高度,以该节点为根节点的树的高度
public int height(){
return Math.max(left==null?0:left.height(),right==null?0:right.height())+1;
}
//返回左子树的高度
public int leftHeight(){
if(left==null){
return 0;
}
return left.height();
}
//返回右子树的高度
public int rightHeight(){
if(right==null){
return 0;
}
return right.height();
}
//左旋转的方法
private void leftRotate(){
//创建新的节点,以当前根节点的值创建
Node newNode = new Node(value);
//把新的节点的左子树设置成当前节点的左子树
newNode.left=left;
//把新的节点的右子树设置成当前节点的右子树的左子树
newNode.right=right.left;
//把当前节点的值替换成右子节点的值
value=right.value;
//把当前节点的右子树设置成当前节点右子树的右子树
right=right.right;
//把当前节点的左子树设置为新的节点
left=newNode;
}
//右旋转的方法
private void rightRotate(){
//以当前节点的值创建一个新节点
Node newNode = new Node(value);
//把新节点的右子树指向当前节点的右子树
newNode.right=right;
//新节点的左子节点指向当前节点的左子节点的右子节点
newNode.left=left.right;
//把当前节点的值改为当前节点左子节点的值
value=left.value;
//把当前节点的左子节点指向当前节点的左子节点的左子节点
left=left.left;
//把当前节点的右子节点指向新的节点
right=newNode;
}
}
多路查找树
2-3树(B树)
B树、B+树、B*树