看了看相关的书籍,得知
平方探测法(Quadratic Probing) 二次探测
平方探测法:以增量序列1^2 -1^2, 2^2, -2^2, …… , q^2, -q^2,且 q<= [ TableSize/2 ] 循环试探下一个存储地址。
//其中范围中的q<=TableSize/2,具体是为何,不得而知。
但TableSize作为上界,却是可以证明得出的。
(
p
+
(
x
+
s
i
z
e
)
2
)
%
s
i
z
e
(p+(x+size)^2)\%size
(p+(x+size)2)%size
=
(
p
+
x
2
+
2
×
x
×
s
i
z
e
+
s
i
z
e
2
)
%
s
i
z
e
=(p+x^2+2\times x \times size + size^2)\%size
=(p+x2+2×x×size+size2)%size
=
(
p
+
x
2
)
%
s
i
z
e
=(p+x^2)\%size
=(p+x2)%size
线性探测是按线性方法一个一个找,只要表里有空位总能将元素填入;而二次探测有可能出现表中有空间但平方探测找不到的情况
线性探测容易聚集,二次探测聚集情况较线性探测要好。
二次探测有时候探测不到整个散列表空间,是其一大缺陷。
但是经过数学家的研究,据说散列表长度TableSize是某个4k+3(k是正整数)形式的素数时,平方探测法就可以探查到整个散列表空间