平方探测法(quadratic probing)

看了看相关的书籍,得知
平方探测法(Quadratic Probing) 二次探测
平方探测法:以增量序列1^2 -1^2, 2^2, -2^2, …… , q^2, -q^2,且 q<= [ TableSize/2 ] 循环试探下一个存储地址。
//其中范围中的q<=TableSize/2,具体是为何,不得而知。
但TableSize作为上界,却是可以证明得出的。

( p + ( x + s i z e ) 2 ) % s i z e (p+(x+size)^2)\%size (p+(x+size)2)%size
= ( p + x 2 + 2 × x × s i z e + s i z e 2 ) % s i z e =(p+x^2+2\times x \times size + size^2)\%size =(p+x2+2×x×size+size2)%size
= ( p + x 2 ) % s i z e =(p+x^2)\%size =(p+x2)%size

线性探测是按线性方法一个一个找,只要表里有空位总能将元素填入;而二次探测有可能出现表中有空间但平方探测找不到的情况
线性探测容易聚集,二次探测聚集情况较线性探测要好。
二次探测有时候探测不到整个散列表空间,是其一大缺陷。
但是经过数学家的研究,据说散列表长度TableSize是某个4k+3(k是正整数)形式的素数时,平方探测法就可以探查到整个散列表空间

平方探测法Quadratic probing)是一种常用的开放地址法解决哈希冲突的方法。在这个方法中,当哈希表的索引位置已经被占用时,会按照一定的规则递增探测,通常每次增加的步长是当前索引值的平方。查找失败的平均长度可以通过以下步骤计算: 1. **假设**:我们有一个大小为`m`的哈希表,采用的是模`m`操作来确定下一个探测位置。 2. **概率分布**:对于每个初始索引`i`,第一个冲突的概率是`1/m`。对于第二次冲突,如果第一次是`i + k^2 mod m`,其中`k`是一个非负整数,那么第二次冲突的概率是`(m - (i + k^2) % m) / m`。 3. **期望值**:由于所有可能的探测位置都是独立同分布的,我们可以计算出总的期望值。这涉及到对所有可能的步长(即`0`到`sqrt(m)`)求和,然后除以总探测次数(理论上的最大值是`m`次),因为平均来说,找到空位需要探测的次数接近于这个值。 设`E[i]`表示从初始索引`i`开始,平均探测次数,那么有: ```math E[i] = \sum_{j=0}^{sqrt(m)} (j^2 \mod m) * Pr[j] ``` 4. **总期望**:最后,查找失败的平均长度`L`将是所有初始索引`i`对应的`E[i]`的平均值: ```math L = \frac{1}{m} \sum_{i=0}^{m-1} E[i] ``` 计算这个表达式可能会很复杂,因为它涉及到了多项式级的增长和求和,通常会使用数学技巧或者数值方法来近似。实际应用中,这个计算通常是基于估算或者通过模拟实验得到的,而不是精确解析。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值