复杂处理下的因果推断公式及推导

复杂处理下的因果推断公式及推导

因果推断与潜在结果框架

在复杂处理下,因果推断通常涉及潜在结果框架,它允许我们定义、估计和解释因果效应。潜在结果是指在给定处理水平下可能观察到的结果,但实际上我们只能观察到一种处理水平下的结果。基本的潜在结果框架公式如下:

Y i ( t ) Y_i(t) Yi(t)

其中 Y i ( t ) Y_i(t) Yi(t) 表示个体 i i i 在处理水平 t t t 下的潜在结果。

通俗解释

潜在结果框架就像是一个农民想要知道不同肥料(处理)对作物产量(结果)的影响。

他想知道,如果他用肥料A(处理水平1),作物产量会是多少?
如果用肥料B(处理水平2),产量又会是多少?

但实际上,他只能在一季作物中选择一种肥料,所以他只能观察到一种处理水平下的产量。
潜在结果框架帮助他理解和估计不同处理水平下的可能结果。

项目描述
潜在结果农民想要知道但无法同时观察到的结果,因为每个作物只能接受一种处理。
处理水平不同的肥料选择,代表不同的处理水平。
实际结果农民实际观察到的作物产量,是在选定处理水平下的结果。

过程推导如下:

  1. 定义潜在结果
    对于每个个体 i i i 和每个处理水平 t t t,我们定义一个潜在结果 Y i ( t ) Y_i(t) Yi(t)。这是个体 i i i 在处理水平 t t t 下可能观察到的结果。

  2. 实际观察与缺失数据
    在实际研究中,我们只能观察到个体 i i i 在接受处理水平 T i T_i Ti 下的结果 Y i = Y i ( T i ) Y_i = Y_i(T_i) Yi=Yi(Ti)。其他处理水平下的潜在结果是缺失的,即我们无法同时观察到 Y i ( 1 ) Y_i(1) Yi(1) Y i ( 0 ) Y_i(0) Yi(0)(或更多处理水平下的结果)。

  3. 因果效应估计
    为了估计处理效应,我们需要比较不同处理水平下的潜在结果。例如,我们可以计算个体处理效应(ITE):
    I T E i = Y i ( 1 ) − Y i ( 0 ) ITE_i = Y_i(1) - Y_i(0) ITEi=Yi(1)Yi(0)
    或者平均处理效应(ATE):
    A T E = 1 N ∑ i = 1 N [ Y i ( 1 ) − Y i ( 0 ) ] ATE = \frac{1}{N} \sum_{i=1}^N [Y_i(1) - Y_i(0)] ATE=N1i=1N[Yi(1)Yi(0)]

  4. 识别与假设
    为了从观察到的数据中估计潜在结果和因果效应,我们需要做出一些识别假设,如随机分配、无混淆变量等。

综上所述,潜在结果框架是因果推断中的一个基本概念,它允许我们定义和估计不同处理水平下的结果,并通过比较这些结果来估计因果效应。在实际应用中,我们需要做出一些假设来从观察到的数据中识别这些潜在结果。

关键词:潜在结果、因果推断、处理效应、识别假设、随机分配。

Keywords: potential outcomes, causal inference, treatment effects, identification assumptions, random assignment.

关键词标签形式【下述内容与井号之间没有空格】

#潜在结果
#因果推断
#处理效应
#识别假设
#随机分配

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神经美学-茂森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值