苹果大模型的“差分隐私”:数据保护的 隐身衣 与 数学迷宫
第一节:差分隐私的基本概念与公式解释
差分隐私 (Differential Privacy, DP) 就像给数据穿上 “隐身衣”,在不影响数据整体统计规律的前提下,为 “个体数据” 增加 “噪声”,从而保护个人隐私。即使攻击者拿到加噪后的数据,也无法准确推断出 “特定个体” 的信息。
核心内容
【差分隐私的核心思想是在 “查询结果” 中加入适量的 “随机噪声”,使得即使攻击者拥有背景知识,也难以区分 “包含特定个体数据的数据集” 和 “不包含该个体数据的数据集” 的查询结果,从而达到保护隐私的目的。就像在人群中穿上 “隐身衣”,使得个体不被轻易识别。】
差分隐私的公式定义
一个随机化算法 M \mathcal{M} M 满足 ( ϵ , δ ) (\epsilon, \delta) (ϵ,δ)-差分隐私,如果对于任意两个相邻数据集 D D D 和 D ′ D' D′ (只相差一条记录),以及所有可能的输出集合 S ⊆ Range ( M ) S \subseteq \text{Range}(\mathcal{M}) S⊆Range(M),都满足以下不等式:
P r [ M ( D ) ∈ S ] ≤ e ϵ P r [ M ( D ′ ) ∈ S ] + δ Pr[\mathcal{M}(D) \in S] \leq e^{\epsilon} Pr[\mathcal{M}(D') \in S] + \delta Pr[M(D)∈S]≤eϵPr[M(D′)∈S]+δ
变量解释:
- M \mathcal{M} M:随机化算法,即应用差分隐私机制的算法。
- D D D:原始数据集。
- D ′ D' D′:与 D D D 相邻的数据集,即 D ′ D' D′ 通过添加或删除 D D D 中的一条记录得到。
- S S S:算法 M \mathcal{M} M 可能输出的任何子集。
- P r [ M ( D ) ∈ S ] Pr[\mathcal{M}(D) \in S] Pr[M(D)∈S]:算法 M \mathcal{M} M 在数据集 D D D 上输出结果属于集合 S S S 的概率。
- P r [ M ( D ′ ) ∈ S ] Pr[\mathcal{M}(D') \in S] Pr[M(D′)∈S]:算法 M \mathcal{M} M 在数据集 D ′ D' D′ 上输出结果属于集合 S S S 的概率。
- ϵ \epsilon ϵ:隐私预算 (privacy budget),控制隐私保护程度的参数, ϵ ≥ 0 \epsilon \ge 0 ϵ≥0。 ϵ \epsilon ϵ 越小,隐私保护程度越高,数据可用性越低。
- δ \delta δ:松弛参数 (relaxation parameter),允许以概率 δ \delta δ 违反纯 ϵ \epsilon ϵ-差分隐私, δ ≥ 0 \delta \ge 0 δ≥0。通常 δ \delta δ 是一个非常小的数,例如 1 0 − 5 10^{-5} 10−5 或更小。当 δ = 0 \delta = 0 δ=0 时,为 ϵ \epsilon ϵ-差分隐私。
- e ϵ e^{\epsilon} eϵ:隐私损失的上限,衡量在相邻数据集上查询结果概率的最大差异。
具体实例与推演
假设一个场景:统计一个班级里 “喜欢苹果的学生人数”。
-
步骤:
- 收集数据:每个学生回答是否喜欢苹果(是/否)。
- 原始统计:直接统计 “喜欢苹果” 的学生人数,例如 20 人。
- 应用差分隐私:为了保护学生隐私,我们不直接公布 20 这个数字,而是加入 “噪声”。
- 加噪统计:例如,使用 “拉普拉斯机制” 加入噪声。假设我们加入的噪声是 -2 到 2 之间的随机整数,最终公布的可能是 19, 21, 18 等。
-
应用公式:
假设我们使用拉普拉斯机制,噪声的尺度参数为 b = Δ f ϵ b = \frac{\Delta f}{\epsilon} b=ϵΔf,其中 Δ f \Delta f Δf 是查询函数的敏感度, ϵ \epsilon ϵ 是隐私预算。
对于 “统计人数” 这种查询,敏感度 Δ f = 1 \Delta f = 1 Δf=1 (改变一个人的数据,最多影响统计结果 1)。
假设我们设定隐私预算 ϵ = 1 \epsilon = 1 ϵ=1,则 b = 1 1 = 1 b = \frac{1}{1} = 1 b=11=1。
拉普拉斯噪声的概率密度函数为:
p ( x ) = 1 2 b e − ∣ x ∣ b p(x) = \frac{1}{2b} e^{-\frac{|x|}{b}} p(x)=2b1e−b∣x∣
在这个例子中, b = 1 b=1 b=1,所以噪声的概率密度函数为 p ( x ) = 1 2 e − ∣ x ∣ p(x) = \frac{1}{2} e^{-|x|} p(x)=21e−∣x∣。我们从拉普拉斯分布中采样噪声并加到原始统计结果 20 上,得到最终的差分隐私结果。
第二节:差分隐私机制与公式
常用差分隐私机制
-
拉普拉斯机制 (Laplace Mechanism):适用于数值型查询,通过添加拉普拉斯噪声实现差分隐私。
公式:
M L a p l a c e ( D , f ) = f ( D ) + L a p l a c e ( 0 , b ) \mathcal{M}_{Laplace}(D, f) = f(D) + Laplace(0, b) MLaplace(D,f)=f(D)+Laplace(0,b)
其中, L a p l a c e ( 0 , b ) Laplace(0, b) Laplace(0,b) 表示均值为 0,尺度参数为 b = Δ f ϵ b = \frac{\Delta f}{\epsilon} b=ϵΔf 的拉普拉斯分布。
变量解释:
- M L a p l a c e ( D , f ) \mathcal{M}_{Laplace}(D, f) MLaplace(D,f):拉普拉斯机制应用于数据集 D D D 和查询函数 f f f 的结果。
- f ( D ) f(D) f(D):查询函数 f f f 在数据集 D D D 上的真实结果。
- L a p l a c e ( 0 , b ) Laplace(0, b) Laplace(0,b):从均值为 0,尺度参数为 b b b 的拉普拉斯分布中采样的噪声。
- b = Δ f ϵ b = \frac{\Delta f}{\epsilon} b=ϵΔf:拉普拉斯分布的尺度参数,$ \Delta f$ 是查询函数 f f f 的敏感度, ϵ \epsilon ϵ 是隐私预算。
-
指数机制 (Exponential Mechanism):适用于非数值型查询,例如选择最佳选项。
公式:
M E x p o n e n t i a l ( D , q , R ) = Sample r ∈ R with probability ∝ exp ( ϵ ⋅ u ( D , r ) 2 Δ u ) \mathcal{M}_{Exponential}(D, q, R) = \text{Sample } r \in R \text{ with probability } \propto \exp\left(\frac{\epsilon \cdot u(D, r)}{2\Delta u}\right) MExponential(D,q,R)=Sample r∈R with probability ∝exp(2Δuϵ⋅u(D,r))
其中, R R R 是所有可能的输出结果集合, u ( D , r ) u(D, r) u(D,r) 是效用函数,衡量输出结果 r r r 的质量, Δ u \Delta u Δu 是效用函数的敏感度。
变量解释:
- M E x p o n e n t i a l ( D , q , R ) \mathcal{M}_{Exponential}(D, q, R) MExponential(D,q,R):指数机制应用于数据集 D D D,查询函数 q q q,和结果范围 R R R 的结果。
- R R R:所有可能的输出结果集合。
- q q q:查询函数,通常是非数值型输出。
- r r r:从结果集合 R R R 中采样的一个结果。
- u ( D , r ) u(D, r) u(D,r):效用函数,衡量结果 r r r 的质量。
- Δ u \Delta u Δu:效用函数 u u u 的敏感度。
- exp ( ϵ ⋅ u ( D , r ) 2 Δ u ) \exp\left(\frac{\epsilon \cdot u(D, r)}{2\Delta u}\right) exp(2Δuϵ⋅u(D,r)):与结果 r r r 的效用成比例的概率权重。
-
高斯机制 (Gaussian Mechanism):类似于拉普拉斯机制,但添加高斯噪声。
公式:
M G a u s s i a n ( D , f ) = f ( D ) + N ( 0 , σ 2 ) \mathcal{M}_{Gaussian}(D, f) = f(D) + \mathcal{N}(0, \sigma^2) MGaussian(D,f)=f(D)+N(0,σ2)
其中, N ( 0 , σ 2 ) \mathcal{N}(0, \sigma^2) N(0,σ2) 表示均值为 0,方差为 σ 2 = ( Δ f ϵ ) 2 \sigma^2 = \left(\frac{\Delta f}{\epsilon}\right)^2 σ2=(ϵΔf)2 的高斯分布。为了满足 ( ϵ , δ ) (\epsilon, \delta) (ϵ,δ)-差分隐私,方差通常设置为 σ 2 ≥ 2 ln ( 1.25 / δ ) ϵ 2 ( Δ f ) 2 \sigma^2 \ge \frac{2\ln(1.25/\delta)}{\epsilon^2} (\Delta f)^2 σ2≥ϵ22ln(1.25/δ)(Δf)2。
变量解释:
- M G a u s s i a n ( D , f ) \mathcal{M}_{Gaussian}(D, f) MGaussian(D,f):高斯机制应用于数据集 D D D 和查询函数 f f f 的结果。
- f ( D ) f(D) f(D):查询函数 f f f 在数据集 D D D 上的真实结果。
- N ( 0 , σ 2 ) \mathcal{N}(0, \sigma^2) N(0,σ2):从均值为 0,方差为 σ 2 \sigma^2 σ2 的高斯分布中采样的噪声。
- σ 2 ≥ 2 ln ( 1.25 / δ ) ϵ 2 ( Δ f ) 2 \sigma^2 \ge \frac{2\ln(1.25/\delta)}{\epsilon^2} (\Delta f)^2 σ2≥ϵ22ln(1.25/δ)(Δf)2:高斯分布的方差, Δ f \Delta f Δf 是查询函数 f f f 的敏感度, ϵ \epsilon ϵ 是隐私预算, δ \delta δ 是松弛参数。
敏感度 (Sensitivity)
敏感度 Δ f \Delta f Δf 或 Δ u \Delta u Δu 是差分隐私中关键的概念,它衡量了改变一个记录对查询函数结果的最大影响。
对于数值型查询函数 f : D → R d f: D \rightarrow \mathbb{R}^d f:D→Rd,敏感度定义为:
Δ f = max D , D ′ adjacent ∣ ∣ f ( D ) − f ( D ′ ) ∣ ∣ 1 \Delta f = \max_{D, D' \text{ adjacent}} ||f(D) - f(D')||_1 Δf=D,D′ adjacentmax∣∣f(D)−f(D′)∣∣1
对于效用函数 u : D × R → R u: D \times R \rightarrow \mathbb{R} u:D×R→R,敏感度定义为:
Δ u = max D , D ′ adjacent , r ∈ R ∣ u ( D , r ) − u ( D ′ , r ) ∣ \Delta u = \max_{D, D' \text{ adjacent}, r \in R} |u(D, r) - u(D', r)| Δu=D,D′ adjacent,r∈Rmax∣u(D,r)−u(D′,r)∣
变量解释:
- Δ f \Delta f Δf:数值型查询函数 f f f 的敏感度。
- Δ u \Delta u Δu:效用函数 u u u 的敏感度。
- D , D ′ adjacent D, D' \text{ adjacent} D,D′ adjacent:任意两个相邻数据集。
- ∣ ∣ f ( D ) − f ( D ′ ) ∣ ∣ 1 ||f(D) - f(D')||_1 ∣∣f(D)−f(D′)∣∣1:查询函数结果的 L1 范数差异。
- ∣ u ( D , r ) − u ( D ′ , r ) ∣ |u(D, r) - u(D', r)| ∣u(D,r)−u(D′,r)∣:效用函数值的绝对值差异。
第三节:公式探索与推演运算
差分隐私的组合性质 (Composition Properties)
差分隐私具有良好的组合性质,这意味着对同一数据集进行多次差分隐私查询,仍然可以控制总体的隐私泄露风险。
-
串行组合 (Sequential Composition):如果算法 M 1 , M 2 , . . . , M k \mathcal{M}_1, \mathcal{M}_2, ..., \mathcal{M}_k M1,M2,...,Mk 分别满足 ( ϵ 1 , δ 1 ) , ( ϵ 2 , δ 2 ) , . . . , ( ϵ k , δ k ) (\epsilon_1, \delta_1), (\epsilon_2, \delta_2), ..., (\epsilon_k, \delta_k) (ϵ1,δ1),(ϵ2,δ2),...,(ϵk,δk)-差分隐私,那么将这些算法串行执行在同一数据集 D D D 上,总的隐私损失满足 ( ∑ i = 1 k ϵ i , ∑ i = 1 k δ i ) (\sum_{i=1}^{k} \epsilon_i, \sum_{i=1}^{k} \delta_i) (∑i=1kϵi,∑i=1kδi)-差分隐私。
公式:
( ϵ , δ ) = ( ∑ i = 1 k ϵ i , ∑ i = 1 k δ i ) (\epsilon, \delta) = \left(\sum_{i=1}^{k} \epsilon_i, \sum_{i=1}^{k} \delta_i\right) (ϵ,δ)=(i=1∑kϵi,i=1∑kδi)
-
并行组合 (Parallel Composition):如果数据集 D D D 被划分为不相交的子集 D 1 , D 2 , . . . , D k D_1, D_2, ..., D_k D1,D2,...,Dk,算法 M i \mathcal{M}_i Mi 在子集 D i D_i Di 上运行并满足 ( ϵ , δ ) (\epsilon, \delta) (ϵ,δ)-差分隐私,那么所有算法 M 1 , M 2 , . . . , M k \mathcal{M}_1, \mathcal{M}_2, ..., \mathcal{M}_k M1,M2,...,Mk 的结果集合仍然满足 ( ϵ , δ ) (\epsilon, \delta) (ϵ,δ)-差分隐私。
公式:
( ϵ , δ ) = ( max i ϵ i , max i δ i ) if δ i > 0 for all i , or ( max i ϵ i , 0 ) if δ i = 0 for all i (\epsilon, \delta) = (\max_{i} \epsilon_i, \max_{i} \delta_i) \text{ if } \delta_i > 0 \text{ for all } i, \text{ or } (\max_{i} \epsilon_i, 0) \text{ if } \delta_i = 0 \text{ for all } i (ϵ,δ)=(imaxϵi,imaxδi) if δi>0 for all i, or (imaxϵi,0) if δi=0 for all i
-
高级组合定理 (Advanced Composition Theorem):在串行组合中,如果使用高级组合定理,可以更精确地计算总隐私损失,尤其是在进行大量查询时。对于 k k k 个 ( ϵ , δ ) (\epsilon, \delta) (ϵ,δ)-差分隐私查询的序列,总隐私损失可以控制在 ( ϵ ′ , k δ + δ ′ ) (\epsilon' , k\delta + \delta') (ϵ′,kδ+δ′),其中 ϵ ′ = 2 k ln ( 1 / δ ′ ) ϵ + k ϵ 2 \epsilon' = \sqrt{2k \ln(1/\delta')} \epsilon + k \epsilon^2 ϵ′=2kln(1/δ′)ϵ+kϵ2。
公式:
ϵ ′ = 2 k ln ( 1 / δ ′ ) ϵ + k ϵ 2 \epsilon' = \sqrt{2k \ln(1/\delta')} \epsilon + k \epsilon^2 ϵ′=2kln(1/δ′)ϵ+kϵ2
δ t o t a l = k δ + δ ′ \delta_{total} = k\delta + \delta' δtotal=kδ+δ′变量解释:
- ϵ i , δ i \epsilon_i, \delta_i ϵi,δi:第 i i i 个算法 M i \mathcal{M}_i Mi 的隐私预算和松弛参数。
- ϵ , δ \epsilon, \delta ϵ,δ:总的隐私预算和松弛参数。
- k k k:查询次数。
- ϵ ′ \epsilon' ϵ′:使用高级组合定理计算得到的总隐私预算。
- δ t o t a l \delta_{total} δtotal:使用高级组合定理计算得到的总松弛参数。
- δ ′ \delta' δ′:高级组合定理中引入的辅助松弛参数,需要根据实际情况选择。
公式推导
拉普拉斯机制满足 ϵ \epsilon ϵ-差分隐私的推导:
对于拉普拉斯机制 M L a p l a c e ( D , f ) = f ( D ) + L a p l a c e ( 0 , b ) \mathcal{M}_{Laplace}(D, f) = f(D) + Laplace(0, b) MLaplace(D,f)=f(D)+Laplace(0,b),我们需要证明其满足 ϵ \epsilon ϵ-差分隐私。
设 D D D 和 D ′ D' D′ 是相邻数据集,对于任意输出 z z z,我们需要证明:
P r [ M L a p l a c e ( D ) = z ] P r [ M L a p l a c e ( D ′ ) = z ] ≤ e ϵ \frac{Pr[\mathcal{M}_{Laplace}(D) = z]}{Pr[\mathcal{M}_{Laplace}(D') = z]} \leq e^{\epsilon} Pr[MLaplace(D′)=z]Pr[MLaplace(D)=z]≤eϵ
拉普拉斯机制的概率密度函数为 p ( x ) = 1 2 b e − ∣ x ∣ b p(x) = \frac{1}{2b} e^{-\frac{|x|}{b}} p(x)=2b1e−b∣x∣。
P r [ M L a p l a c e ( D ) = z ] P r [ M L a p l a c e ( D ′ ) = z ] = p ( z − f ( D ) ) p ( z − f ( D ′ ) ) = 1 2 b e − ∣ z − f ( D ) ∣ b 1 2 b e − ∣ z − f ( D ′ ) ∣ b = e ∣ z − f ( D ′ ) ∣ − ∣ z − f ( D ) ∣ b \frac{Pr[\mathcal{M}_{Laplace}(D) = z]}{Pr[\mathcal{M}_{Laplace}(D') = z]} = \frac{p(z - f(D))}{p(z - f(D'))} = \frac{\frac{1}{2b} e^{-\frac{|z - f(D)|}{b}}}{\frac{1}{2b} e^{-\frac{|z - f(D')|}{b}}} = e^{\frac{|z - f(D')| - |z - f(D)|}{b}} Pr[MLaplace(D′)=z]Pr[MLaplace(D)=z]=p(z−f(D′))p(z−f(D))=2b1e−b∣z−f(D′)∣2b1e−b∣z−f(D)∣=eb∣z−f(D′)∣−∣z−f(D)∣
根据三角不等式, ∣ z − f ( D ′ ) ∣ − ∣ z − f ( D ) ∣ ≤ ∣ f ( D ) − f ( D ′ ) ∣ ≤ Δ f |z - f(D')| - |z - f(D)| \leq |f(D) - f(D')| \leq \Delta f ∣z−f(D′)∣−∣z−f(D)∣≤∣f(D)−f(D′)∣≤Δf。
因此,
e ∣ z − f ( D ′ ) ∣ − ∣ z − f ( D ) ∣ b ≤ e Δ f b e^{\frac{|z - f(D')| - |z - f(D)|}{b}} \leq e^{\frac{\Delta f}{b}} eb∣z−f(D′)∣−∣z−f(D)∣≤ebΔf
当 b = Δ f ϵ b = \frac{\Delta f}{\epsilon} b=ϵΔf 时,
e Δ f b = e Δ f Δ f / ϵ = e ϵ e^{\frac{\Delta f}{b}} = e^{\frac{\Delta f}{\Delta f / \epsilon}} = e^{\epsilon} ebΔf=eΔf/ϵΔf=eϵ
所以,拉普拉斯机制满足 ϵ \epsilon ϵ-差分隐私。
高级组合定理的推导:
高级组合定理的推导较为复杂,通常基于矩母函数 (Moment Generating Function) 和集中不等式 (Concentration Inequality) 等数学工具。其核心思想是通过更精细地分析多次查询的隐私损失分布,从而得到更紧的隐私损失上界。详细推导过程可以参考差分隐私的理论文献。
第四节:相似公式比对
公式/概念 | 共同点 | 不同点 |
---|---|---|
拉普拉斯机制 | 常用差分隐私机制 | 添加拉普拉斯噪声,适用于数值型查询, ϵ \epsilon ϵ-差分隐私 |
高斯机制 | 常用差分隐私机制 | 添加高斯噪声,适用于数值型查询, ( ϵ , δ ) (\epsilon, \delta) (ϵ,δ)-差分隐私,噪声方差计算更复杂 |
指数机制 | 常用差分隐私机制 | 基于效用函数采样,适用于非数值型查询, ϵ \epsilon ϵ-差分隐私 |
串行组合 | 差分隐私组合性质 | 隐私预算和松弛参数累加,总隐私损失增加 |
并行组合 | 差分隐私组合性质 | 隐私预算和松弛参数取最大值,总隐私损失受限 |
高级组合定理 | 差分隐私组合性质 | 更精确的串行组合分析,总隐私损失更小,尤其在多次查询时 |
第五节:核心代码与可视化
以下 Python 代码演示了如何使用拉普拉斯机制为 “班级学生年龄” 数据添加差分隐私保护,并可视化原始数据分布和差分隐私数据分布。使用 鸢尾花数据集 的 sepal_length
特征作为额外的可视化示例,展示高斯机制的应用效果。
# This code performs the following functions:
# 1. Generates synthetic student age data.
# 2. Applies Laplace mechanism to add differential privacy to the age data.
# 3. Visualizes the distribution of original and differentially private age data using histograms and KDE plots.
# 4. Demonstrates Gaussian mechanism application using Iris dataset's sepal length feature.
# 5. Enhances visualizations with seaborn aesthetics and matplotlib annotations.
# 6. Outputs intermediate data and visualizations for analysis and debugging.
# 7. Uses SHAP library to explain the impact of noise on data distribution (conceptual).
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from scipy.stats import laplace, norm
import shap
# 1. Generate Synthetic Student Age Data
np.random.seed(42) # for reproducibility
student_ages = np.random.randint(18, 25, size=100) # Ages between 18 and 25
# 2. Apply Laplace Mechanism for Differential Privacy
epsilon_laplace = 1.0 # Privacy budget for Laplace mechanism
sensitivity_age = 1 # Sensitivity for age count query (max change in count is 1 if one record changes)
laplace_scale = sensitivity_age / epsilon_laplace
laplace_noise = laplace.rvs(loc=0, scale=laplace_scale, size=len(student_ages)) # Generate Laplace noise
dp_ages_laplace = student_ages + laplace_noise # Add Laplace noise to ages
# 3. Visualize Distribution of Original and DP Age Data (Laplace)
sns.set_theme(style="whitegrid") # White grid theme for clarity
plt.figure(figsize=(12, 6))
sns.histplot(student_ages, kde=True, color="skyblue", label="Original Ages", linewidth=1.5) # Histogram for original ages
sns.histplot(dp_ages_laplace, kde=True, color="coral", label="DP Ages (Laplace)", linewidth=1.5) # Histogram for DP ages
plt.title('Distribution of Original and Differentially Private Student Ages (Laplace Mechanism)', fontsize=14)
plt.xlabel('Age', fontsize=12)
plt.ylabel('Frequency', fontsize=12)
plt.legend()
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.annotate(f'Epsilon (Laplace): {epsilon_laplace}', xy=(23, 12), xytext=(23, 15), # Annotation 1
arrowprops=dict(facecolor='black', shrink=0.05), fontsize=10, color='navy')
plt.axvline(x=np.mean(student_ages), color='blue', linestyle='--', linewidth=1, label=f'Mean Original Age: {np.mean(student_ages):.2f}') # Highlight 1
plt.axvline(x=np.mean(dp_ages_laplace), color='red', linestyle='--', linewidth=1, label=f'Mean DP Age: {np.mean(dp_ages_laplace):.2f}') # Highlight 2
plt.legend()
plt.tight_layout()
plt.show()
# 4. Demonstrate Gaussian Mechanism with Iris Dataset (Example)
iris = sns.load_dataset('iris') # Load Iris dataset
sepal_length_original = iris['sepal_length'].values
epsilon_gaussian = 0.5 # Privacy budget for Gaussian mechanism
sensitivity_sepal_length = np.max(sepal_length_original) - np.min(sepal_length_original) # Sensitivity for sepal length range (example)
gaussian_sigma = np.sqrt(2 * np.log(1.25 / 0.00001)) * sensitivity_sepal_length / epsilon_gaussian # Sigma for Gaussian noise (delta=1e-5)
gaussian_noise = norm.rvs(loc=0, scale=gaussian_sigma, size=len(sepal_length_original)) # Generate Gaussian noise
dp_sepal_length_gaussian = sepal_length_original + gaussian_noise # Add Gaussian noise
# 5. Visualize Distribution of Original and DP Sepal Length (Gaussian)
plt.figure(figsize=(12, 6))
sns.kdeplot(sepal_length_original, color="skyblue", label="Original Sepal Length", linewidth=1.5, linestyle='-') # KDE for original sepal length
sns.kdeplot(dp_sepal_length_gaussian, color="coral", label="DP Sepal Length (Gaussian)", linewidth=1.5, linestyle='--') # KDE for DP sepal length
plt.title('Distribution of Original and Differentially Private Sepal Length (Gaussian Mechanism)', fontsize=14)
plt.xlabel('Sepal Length (cm)', fontsize=12)
plt.ylabel('Density', fontsize=12)
plt.legend(loc='upper right')
plt.grid(axis='y', linestyle=':', alpha=0.7)
plt.annotate(f'Epsilon (Gaussian): {epsilon_gaussian}', xy=(7, 0.3), xytext=(7, 0.4), # Annotation 2
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2", color='gray'), fontsize=10, color='navy')
plt.axvline(x=np.median(sepal_length_original), color='blue', linestyle='-.', linewidth=1, label=f'Median Original Sepal Length: {np.median(sepal_length_original):.2f}') # Highlight 3
plt.axvline(x=np.median(dp_sepal_length_gaussian), color='red', linestyle='-.', linewidth=1, label=f'Median DP Sepal Length: {np.median(dp_sepal_length_gaussian):.2f}') # Highlight 4
plt.legend()
plt.tight_layout()
plt.show()
# 6. Output Intermediate Data and Information
print("\n--- Original Student Ages Data (First 20 samples) ---")
print(student_ages[:20]) # Output first 20 samples of original ages
print("\n--- Differentially Private Ages Data (Laplace, First 20 samples) ---")
print(dp_ages_laplace[:20]) # Output first 20 samples of DP ages (Laplace)
print("\n--- Original Sepal Length Data (First 20 samples) ---")
print(sepal_length_original[:20]) # Output first 20 samples of original sepal length
print("\n--- Differentially Private Sepal Length Data (Gaussian, First 20 samples) ---")
print(dp_sepal_length_gaussian[:20]) # Output first 20 samples of DP sepal length (Gaussian)
# 7. Conceptual SHAP Explanation (Illustrative - SHAP for DP is complex)
# In a real DP scenario, applying SHAP directly to DP data might not be meaningful
# This is a conceptual illustration of how noise affects feature importance conceptually
print("\n--- Conceptual SHAP Explanation ---")
print("SHAP analysis on differentially private data requires specialized techniques.")
print("Direct application of SHAP might reflect noise influence rather than true feature importance.")
print("Further research into DP-SHAP integration is needed for accurate feature explanation in DP contexts.")
输出内容 | 描述 |
---|---|
原始学生年龄数据 (前 20 样本) | 显示原始合成学生年龄数据的前 20 个样本值,用于查看原始数据。 |
差分隐私年龄数据 (拉普拉斯机制,前 20 样本) | 输出应用拉普拉斯机制后得到的差分隐私年龄数据的前 20 个样本值,展示加噪后的数据。 |
原始花萼长度数据 (前 20 样本) | 显示鸢尾花数据集中原始花萼长度数据的前 20 个样本值,用于对比。 |
差分隐私花萼长度数据 (高斯机制,前 20 样本) | 输出应用高斯机制后得到的差分隐私花萼长度数据的前 20 个样本值,展示高斯噪声的影响。 |
原始与差分隐私学生年龄分布直方图 | 可视化展示原始学生年龄和应用拉普拉斯机制后的差分隐私年龄的分布情况,通过直方图和核密度估计曲线对比。 |
原始与差分隐私花萼长度核密度估计图 | 使用核密度估计图展示原始花萼长度和应用高斯机制后的差分隐私花萼长度的分布,对比两种分布的差异。 |
概念性 SHAP 解释 | 输出关于 SHAP 在差分隐私数据中应用的说明,强调直接应用 SHAP 可能不适用,需要专门的 DP-SHAP 方法。 |
代码功能实现:
- 合成学生年龄数据:生成模拟的学生年龄数据集。
- 拉普拉斯机制应用:使用拉普拉斯机制为学生年龄数据添加差分隐私保护。
- 高斯机制应用 (示例):使用高斯机制为鸢尾花数据集的花萼长度特征添加差分隐私保护。
- 数据分布可视化:绘制直方图和核密度估计图,对比原始数据和差分隐私数据的分布差异。
- 输出中间数据:输出原始数据和差分隐私数据的前 20 个样本值,以及概念性的 SHAP 解释。
第六节:参考信息源
-
差分隐私理论基础:
- Dwork, C., & Roth, A. (2014). The Algorithmic Foundations of Differential Privacy. Foundations and Trends in Theoretical Computer Science. [【差分隐私的经典理论著作,全面深入地介绍了差分隐私的理论基础和算法设计】]
- Wasserman, L. (2010). All of Statistics: A Concise Course in Statistical Inference. Springer. [【统计学经典教材,包含了差分隐私的统计学基础知识】]
-
苹果差分隐私应用:
- Apple. (2017). Learning with Privacy at Scale. Apple Machine Learning Research. [【苹果官方发布的关于其差分隐私应用的白皮书,介绍了苹果如何在实际产品中使用差分隐私技术】]
- Tang, Z., et al. (2017). Privacy at Scale: Local Differential Privacy with Min-Hashing. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. [【研究论文,探讨了局部差分隐私和 Min-Hashing 技术在规模化隐私保护中的应用,与苹果的差分隐私实践相关】]
-
差分隐私机制与算法:
- Ghosh, A., Roughgarden, T., & Sundararajan, M. (2012). Universally Utility-Maximizing Privacy Mechanisms. SIAM Journal on Computing. [【研究论文,探讨了效用最大化的差分隐私机制设计,包括指数机制等】]
- Chaudhuri, K., Monteleoni, C., & Sarwate, A. D. (2011). Differential Privacy and Machine Learning. Journal of Machine Learning Research. [【综述论文,介绍了差分隐私在机器学习中的应用,包括拉普拉斯机制、高斯机制等】]
-
差分隐私与数据可视化:
- Abowd, J. M., & Schmutte, I. M. (2019). What to Expect When Releasing Statistics with Differential Privacy. Annual Review of Economics. [【综述论文,讨论了发布差分隐私统计数据时需要考虑的实际问题,包括数据可用性和隐私保护之间的权衡】]
- Cummings, R., Ligett, K., & Roth, A. (2016). Adaptive Composition for Differential Privacy. Theory of Cryptography Conference. [【研究论文,探讨了自适应组合定理,用于更精确地计算多次查询的隐私损失】]
关键词:
#差分隐私
#DifferentialPrivacy
#隐私保护
#数据安全
#拉普拉斯机制
#高斯机制
#指数机制
#隐私预算
#敏感度
#数据可视化