重整化群(RG):物理学的 “放大镜”和 “简化术”,带你 “看透”物质世界的 “尺度秘密”

重整化群(RG):物理学的 “放大镜”“简化术”,带你 “看透” 物质世界的 “尺度秘密”

第一节:重整化群的基本概念与公式解释

重整化群 (Renormalization Group, RG) 就像物理学家的 “放大镜”“简化术”,它帮助我们理解物理系统在不同 “尺度” 下的行为。通过 RG,我们可以 “粗粒化” 观察,忽略微观细节,抓住宏观本质,就像 “照相机 zoom out” 一样,从复杂到简洁,揭示物理规律的 “尺度不变性”

核心内容

【重整化群的核心思想是通过 “尺度变换”,研究物理系统在不同尺度下的 “有效理论”
它通过 “粗粒化” 操作,“减少自由度”,并 “调整参数”,使得在更大尺度上,系统仍然可以用 “简化” 的理论来描述。
就像用 “低分辨率” 的照片仍然能 “辨认” 出物体,RG 让我们在 “简化” 的模型中 “抓住” 物理现象的 “本质特征”。】

重整化群的基本操作公式
  1. 尺度变换 (Scaling Transformation):将系统的 “空间尺度” 放大或缩小。

    公式:

    x ′ = x / b x' = x / b x=x/b

    变量解释

    • x x x:原始空间坐标。
    • x ′ x' x:变换后的空间坐标。
    • b b b:尺度因子, b > 1 b > 1 b>1 表示放大尺度(zoom out), 0 < b < 1 0 < b < 1 0<b<1 表示缩小尺度(zoom in)。

    通俗解释

    • 就像 “地图的比例尺”,尺度变换就是改变我们观察系统的 “视角” b > 1 b > 1 b>1 相当于 “缩小地图比例尺”,看到更广阔的区域,但细节减少; 0 < b < 1 0 < b < 1 0<b<1 相当于 “放大地图比例尺”,看到更精细的局部,但视野变窄。
  2. 粗粒化 (Coarse-graining):将微观自由度 “平均化”“积分掉”,保留宏观自由度。

    公式(以 “块自旋变换” 为例):

    S i ′ ′ = sgn ( ∑ i ∈ block  i ′ S i ) S'_{i'} = \text{sgn}\left(\sum_{i \in \text{block } i'} S_i\right) Si=sgn(iblock iSi)

    变量解释

    • S i S_i Si:原始格点 i i i 上的自旋变量(例如,Ising 模型中的自旋)。
    • S i ′ ′ S'_{i'} Si:粗粒化后,块 i ′ i' i 上的有效自旋变量。
    • block  i ′ \text{block } i' block i:包含多个原始格点 i i i 的块。
    • sgn ( ⋅ ) \text{sgn}(\cdot) sgn():符号函数,取总和的符号。

    通俗解释

    • 就像把 “一堆沙子” 看作一个 “整体”,而不是 “每一粒沙子”。粗粒化就是把 “微观的、大量的自由度” 归并成 “宏观的、少量的有效自由度”。在 “块自旋变换” 中,我们把 “一块区域内的自旋” 用一个 “代表性自旋” 来代替。
  3. 参数重整化 (Parameter Renormalization):调整物理模型的 “参数”,使得粗粒化后的模型与原始模型在 “宏观性质” 上保持一致。

    公式(以 “Ising 模型” 为例,示意性):

    K ′ = R ( K , b ) K' = R(K, b) K=R(K,b)

    变量解释

    • K K K:原始模型的参数(例如,Ising 模型中的耦合常数)。
    • K ′ K' K:重整化后的模型参数。
    • R ( K , b ) R(K, b) R(K,b):重整化群变换函数,依赖于原始参数 K K K 和尺度因子 b b b

    通俗解释

    • 就像 “调整照片的参数”(亮度、对比度等),使得 “低分辨率照片” 仍然能 “清晰地展现” 物体的 “主要特征”。参数重整化就是 “调整物理模型的参数”,使得 “粗粒化后的模型” 仍然能 “准确地描述” 系统的 “宏观行为”

具体实例与推演

“二维 Ising 模型” 为例,理解重整化群的应用。

  • 模型描述:二维正方晶格上,每个格点有一个自旋 S i = ± 1 S_i = \pm 1 Si=±1,相邻自旋之间有相互作用,能量为 E = − J ∑ ⟨ i , j ⟩ S i S j E = -J \sum_{\langle i, j \rangle} S_i S_j E=Ji,jSiSj,其中 J J J 是耦合常数。

  • 重整化群步骤

    1. 尺度变换:将晶格尺度放大 b = 2 b = 2 b=2 倍,例如将 2 × 2 2 \times 2 2×2 的格点块视为一个 “超格点”
    2. 粗粒化:定义 “块自旋” S i ′ ′ S'_{i'} Si 为块内自旋的平均值或符号函数。
    3. 参数重整化:推导新的耦合常数 J ′ J' J 与原始 J J J 的关系,例如 J ′ = R ( J , b = 2 ) J' = R(J, b=2) J=R(J,b=2)
  • 重整化群迭代:重复上述步骤,不断放大尺度,得到一系列重整化后的参数 J , J ′ , J ′ ′ , . . . J, J', J'', ... J,J,J′′,...

  • 固定点 (Fixed Point):如果存在参数 J ∗ J^* J,使得 J ∗ = R ( J ∗ , b ) J^* = R(J^*, b) J=R(J,b),则 J ∗ J^* J 称为重整化群变换的 “固定点”。固定点对应于系统的 “尺度不变性” 状态,例如 “临界点”

  • 临界现象:在 “临界温度” T c T_c Tc 附近,Ising 模型展现出 “尺度不变性”,可以用重整化群理论来研究 “临界指数” 等普适性质。

第二节:重整化群机制与公式

关键概念与公式
  1. RG 流 (RG Flow):参数在重整化群变换下的演化轨迹。

    公式:

    K l + 1 = R ( K l , b ) K_{l+1} = R(K_l, b) Kl+1=R(Kl,b)

    变量解释

    • K l K_l Kl:第 l l l 次重整化群变换后的参数。
    • K l + 1 K_{l+1} Kl+1:第 l + 1 l+1 l+1 次重整化群变换后的参数。
    • R ( K l , b ) R(K_l, b) R(Kl,b):重整化群变换函数。

    通俗解释

    • 就像 “河流的流向”,RG 流描述了参数随着尺度变化的 “演化路径”。从 “微观尺度” 出发,经过多次重整化群变换,参数会 “流向” 不同的 “区域”,这些区域对应于不同的 “物理相”
  2. 相关参数 (Relevant Parameter):当尺度放大时,其值 “远离” 固定点的参数。

    公式(线性化 RG 变换):

    δ K i ′ = ∑ j M i j δ K j \delta K'_{i} = \sum_{j} M_{ij} \delta K_{j} δKi=jMijδKj

    M i j = ∂ R i ( K ) ∂ K j ∣ K = K ∗ M_{ij} = \left.\frac{\partial R_i(K)}{\partial K_j}\right|_{K=K^*} Mij=KjRi(K) K=K

    变量解释

    • δ K i \delta K_i δKi:参数 K i K_i Ki 偏离固定点 K i ∗ K^*_i Ki 的微小量。
    • δ K i ′ \delta K'_i δKi:重整化群变换后,参数 K i K_i Ki 的偏离量。
    • M i j M_{ij} Mij:重整化群变换矩阵 R R R 在固定点 K ∗ K^* K 处的雅可比矩阵。
    • M i j M_{ij} Mij 的本征值 λ i > 1 \lambda_i > 1 λi>1 对应的参数 K i K_i Ki 是相关参数。

    通俗解释

    • 就像 “斜坡上的小球”“相关参数” 就像 “不稳定的方向”,即使初始值稍微偏离固定点,经过多次重整化群变换,也会 “越跑越远”“温度” 就是 Ising 模型的 “相关参数”,温度的微小变化会 “显著影响” 系统的 “宏观相”
  3. 无关参数 (Irrelevant Parameter):当尺度放大时,其值 “趋近” 固定点的参数。

    公式(线性化 RG 变换):

    δ K i ′ = ∑ j M i j δ K j \delta K'_{i} = \sum_{j} M_{ij} \delta K_{j} δKi=jMijδKj

    • M i j M_{ij} Mij 的本征值 λ i < 1 \lambda_i < 1 λi<1 对应的参数 K i K_i Ki 是无关参数。

    通俗解释

    • 就像 “盆地底部的小球”“无关参数” 就像 “稳定的方向”,即使初始值稍微偏离固定点,经过多次重整化群变换,也会 “被拉回” 固定点。“晶格常数” 的微小变化通常是 “无关的”,它 “不影响” 系统的 “宏观相”
  4. 临界指数 (Critical Exponent):描述物理量在临界点附近的行为。

    公式(以 “关联长度指数” ν \nu ν 为例):

    ξ ∼ ∣ T − T c ∣ − ν \xi \sim |T - T_c|^{-\nu} ξTTcν

    ν = ln ⁡ b ln ⁡ λ relevant \nu = \frac{\ln b}{\ln \lambda_{\text{relevant}}} ν=lnλrelevantlnb

    变量解释

    • ξ \xi ξ:关联长度,描述系统中关联的尺度。
    • T T T:温度。
    • T c T_c Tc:临界温度。
    • ν \nu ν:关联长度指数。
    • λ relevant \lambda_{\text{relevant}} λrelevant:与相关参数对应的重整化群变换矩阵的最大本征值。

    通俗解释

    • 就像 “地震震级”“临界指数” 描述了物理量在 “临界点附近” 变化的 “剧烈程度”“关联长度指数” ν \nu ν 描述了 “关联长度”“临界温度附近” 如何 “发散”。临界指数是 “普适的”,具有相同的临界指数的系统属于同一个 “普适类”

第三节:公式探索与推演运算

重整化群变换的推导 (Ising 模型为例)

“二维 Ising 模型”“Decimation RG” 为例,推导重整化群变换函数。

  1. 模型哈密顿量

    H = − K ∑ ⟨ i , j ⟩ S i S j H = -K \sum_{\langle i, j \rangle} S_i S_j H=Ki,jSiSj

    其中 K = J / ( k B T ) K = J / (k_B T) K=J/(kBT),是无量纲耦合常数。

  2. 配分函数

    Z = ∑ { S i } e − H Z = \sum_{\{S_i\}} e^{-H} Z={Si}eH

  3. Decimation RG 变换:选择 “部分自旋” 进行 “迹积分”,例如在 2 × 2 2 \times 2 2×2 的格点块中,积分掉 “中心自旋” S 3 S_3 S3

    e − H ′ ( S 1 , S 2 , S 4 , S 5 ; K ′ ) = ∑ S 3 = ± 1 e − H ( S 1 , S 2 , S 3 , S 4 , S 5 ; K ) e^{-H'(S_1, S_2, S_4, S_5; K')} = \sum_{S_3 = \pm 1} e^{-H(S_1, S_2, S_3, S_4, S_5; K)} eH(S1,S2,S4,S5;K)=S3=±1eH(S1,S2,S3,S4,S5;K)

    其中 H ′ H' H 是粗粒化后的有效哈密顿量,只依赖于 “边界自旋” S 1 , S 2 , S 4 , S 5 S_1, S_2, S_4, S_5 S1,S2,S4,S5,以及新的耦合常数 K ′ K' K

  4. 推导重整化群变换函数 K ′ = R ( K ) K' = R(K) K=R(K)

    展开指数项,进行求和运算,可以得到 K ′ K' K K K K 的关系。对于 Decimation RG,近似的重整化群变换函数为:

    K ′ ≈ 1 2 ln ⁡ cosh ⁡ ( 2 K ) K' \approx \frac{1}{2} \ln \cosh(2K) K21lncosh(2K)

    更精确的近似为:

    tanh ⁡ ( K ′ ) = [ tanh ⁡ ( K ) ] 2 \tanh(K') = [\tanh(K)]^2 tanh(K)=[tanh(K)]2

    或者

    K ′ = 1 2 arctanh ( [ tanh ⁡ ( K ) ] 2 ) K' = \frac{1}{2} \text{arctanh}([\tanh(K)]^2) K=21arctanh([tanh(K)]2)

  5. 寻找固定点:解方程 K ∗ = R ( K ∗ ) K^* = R(K^*) K=R(K),可以找到重整化群变换的固定点。例如,对于近似公式 K ′ ≈ 1 2 ln ⁡ cosh ⁡ ( 2 K ) K' \approx \frac{1}{2} \ln \cosh(2K) K21lncosh(2K),存在两个固定点: K ∗ = 0 K^* = 0 K=0 (高温固定点) 和 K ∗ ≈ 0.506 K^* \approx 0.506 K0.506 (临界固定点)。

相似公式比对 (不同 RG 方案)
RG 方案粗粒化方式参数重整化方式适用模型优点缺点
块自旋变换 (Block Spin RG)平均或符号函数配分函数匹配格点模型 (Ising, Potts)直观,物理意义明确近似性强,计算复杂
库恩变换 (Kadanoff Transformation)积分掉短波长自由度有效作用量匹配连续场模型 ( ϕ 4 \phi^4 ϕ4 理论)适用于连续模型,微扰展开近似性强,高阶项复杂
威尔逊 RG (Wilsonian RG)积分掉高动量壳层有效作用量匹配连续场模型,量子场论适用于连续模型,动量空间,微扰展开计算复杂,截断近似
精确 RG (Exact RG)精确积分变换精确方程 (Polchinski 方程, Wetterich 方程)各种模型理论上精确方程复杂,求解困难
变分 RG (Variational RG)变分近似自由能最小化各种模型变分方法,计算相对简单近似性强,精度受限

公式对比

  • 块自旋变换库恩变换 都是 “实空间 RG”,在 “坐标空间” 进行粗粒化和参数重整化。
  • 威尔逊 RG“动量空间 RG”,在 “动量空间” 积分掉高动量模式,适用于连续场模型和量子场论。
  • 精确 RG 试图建立 “精确的重整化群方程”,例如 “Polchinski 方程”“Wetterich 方程”,但方程通常非常复杂,需要近似求解。
  • 变分 RG 使用 “变分方法” 来近似重整化群变换,通过 “最小化自由能” 来确定重整化后的参数。

第四节:核心代码与可视化

以下 Python 代码演示了 “一维 Ising 模型”“Decimation RG” 的数值模拟,并可视化 “RG 流”“关联长度” 随温度的变化。

# This code performs the following functions:
# 1. Implements Decimation Renormalization Group (RG) for 1D Ising model.
# 2. Calculates RG flow of coupling constant K (inverse temperature).
# 3. Computes correlation length as a function of temperature.
# 4. Visualizes RG flow and correlation length using matplotlib and seaborn.
# 5. Enhances plots with annotations, legends, and grid.
# 6. Outputs intermediate data for analysis and debugging.

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

# 1. Decimation RG for 1D Ising Model
def decimation_rg_1d_ising(K, b=2, iterations=50):
    """
    Performs Decimation RG for 1D Ising model.

    Args:
        K (float): Initial coupling constant (inverse temperature).
        b (int): Scaling factor (default=2).
        iterations (int): Number of RG iterations (default=50).

    Returns:
        list: RG flow of coupling constant K.
    """
    K_flow = [K]
    for _ in range(iterations):
        K = 0.5 * np.log(np.cosh(2 * K)) # Approximate RG transformation for 1D Ising
        K_flow.append(K)
    return K_flow

# 2. Calculate Correlation Length (Approximate for 1D Ising)
def correlation_length_1d_ising(T, Tc=2.269): # Approximate Tc for 2D Ising used for qualitative behavior
    """
    Approximates correlation length for 1D Ising model (using 2D Tc for qualitative behavior).

    Args:
        T (float): Temperature.
        Tc (float): Critical temperature (approximate, default=2D Ising Tc).

    Returns:
        float: Correlation length.
    """
    if T >= Tc:
        return 1.0 # Above Tc, correlation length is finite (approximate)
    else:
        return 1.0 / (Tc - T)**0.63 # Below Tc, correlation length diverges (approximate exponent)


# 3. Generate Temperature and Coupling Constant Data
temperatures = np.linspace(1.0, 4.0, 100) # Temperature range
K_values = 1.0 / temperatures # Coupling constant K = 1/T (in arbitrary units)

# 4. Perform RG Flow Calculation for Multiple Initial K values
rg_flows = []
initial_K_indices = [0, 20, 40, 60, 80] # Indices for different initial K values
for index in initial_K_indices:
    rg_flows.append(decimation_rg_1d_ising(K_values[index]))

# 5. Calculate Correlation Length for Temperatures
correlation_lengths = [correlation_length_1d_ising(T) for T in temperatures]


# 6. Visualize RG Flow
sns.set_theme(style="darkgrid") # Dark grid theme for RG flow plot
plt.figure(figsize=(12, 6))

for i, flow in enumerate(rg_flows):
    plt.plot(flow, label=f'Initial K Index: {initial_K_indices[i]}', linestyle='-', marker='o', markersize=3) # RG flow lines

plt.xlabel('RG Iteration', fontsize=12)
plt.ylabel('Coupling Constant K', fontsize=12)
plt.title('RG Flow of Coupling Constant for 1D Ising Model (Decimation RG)', fontsize=14)
plt.legend(loc='upper right')
plt.grid(True, linestyle='--', alpha=0.7)
plt.axhline(y=0, color='gray', linestyle='--', linewidth=1, label='Fixed Point K=0 (High T)') # Fixed point line
plt.annotate('Fixed Point (K=0)', xy=(40, 0.1), xytext=(30, 0.5), # Annotation 1
             arrowprops=dict(facecolor='white', shrink=0.05), fontsize=10, color='lightgray')
plt.yscale('log') # Log scale for K axis to visualize flow towards fixed point
plt.tight_layout()
plt.show()


# 7. Visualize Correlation Length vs Temperature
sns.set_theme(style="whitegrid") # White grid theme for correlation length plot
plt.figure(figsize=(12, 6))

plt.plot(temperatures, correlation_lengths, color='purple', linewidth=2, linestyle='-', label='Correlation Length') # Correlation length curve

plt.xlabel('Temperature T', fontsize=12)
plt.ylabel('Correlation Length ξ', fontsize=12)
plt.title('Correlation Length vs Temperature for 1D Ising Model (Approximate)', fontsize=14)
plt.legend(loc='upper right')
plt.grid(True, linestyle=':', alpha=0.7)
plt.axvline(x=2.269, color='red', linestyle='--', linewidth=1, label='Approximate Tc (2D Ising)') # Approximate Tc line
plt.annotate('Approximate Tc (2D Ising)', xy=(2.3, 5), xytext=(2.5, 10), # Annotation 2
             arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2", color='gray'), fontsize=10, color='navy')
plt.yscale('log') # Log scale for correlation length axis to visualize divergence near Tc
plt.tight_layout()
plt.show()


# 8. Output Intermediate Data
print("\n--- Temperatures (First 10 samples) ---")
print(temperatures[:10]) # Output first 10 temperatures
print("\n--- Initial K Values (for RG Flow, First 5 samples) ---")
print(K_values[initial_K_indices]) # Output initial K values for RG flow
print("\n--- RG Flow for Initial K Index 0 (First 10 iterations) ---")
print(rg_flows[0][:10]) # Output first 10 iterations of RG flow for the first initial K
print("\n--- Correlation Lengths (First 10 samples) ---")
print(correlation_lengths[:10]) # Output first 10 correlation lengths

在这里插入图片描述

在这里插入图片描述

输出内容描述
温度 (前 10 样本)显示温度范围的前 10 个样本值,用于查看温度的取值范围。
初始 K 值 (RG 流,前 5 样本)输出用于 RG 流计算的初始耦合常数 K 的前 5 个样本值,展示不同起始点的 RG 流。
RG 流 (初始 K 索引 0,前 10 迭代)显示第一个初始 K 值对应的 RG 流的前 10 次迭代结果,展示 K 值随迭代的变化。
关联长度 (前 10 样本)输出关联长度的前 10 个样本值,用于查看关联长度随温度的变化。
RG 流可视化图绘制 RG 流图,展示耦合常数 K 随 RG 迭代次数的变化,不同颜色的线代表不同的初始 K 值。
关联长度 vs 温度 可视化图绘制关联长度随温度变化的曲线图,展示关联长度在临界温度附近的发散行为。

代码功能实现

  1. 一维 Ising 模型 Decimation RG:实现了一维 Ising 模型的 Decimation 重整化群变换函数。
  2. RG 流计算:计算了耦合常数 K 在 RG 变换下的演化轨迹 (RG 流)。
  3. 关联长度计算:近似计算了一维 Ising 模型的关联长度随温度的变化。
  4. RG 流可视化:绘制 RG 流曲线图,展示参数随尺度变化的趋势。
  5. 关联长度可视化:绘制关联长度随温度变化的曲线图,展示临界行为。
  6. 输出中间数据:输出温度、初始 K 值、RG 流和关联长度等中间数据,用于分析和调试。

第五节:参考信息源

  1. 重整化群理论基础

    • K. G. Wilson (1974). “The renormalization group: Critical phenomena and the Kondo problem”. Reviews of Modern Physics. [【影响因子较高,经典文献】]内容概述:该论文详细阐述了重整化群的理论框架和应用,为理解临界现象和构建有效理论提供了重要基础。
  2. 重整化群与深度学习

    • P. Mehta & D. J. Schwab (2014). “An exact mapping between the Variational Renormalization Group and Deep Learning”. arXiv preprint. [【新兴研究领域文献】]内容概述:该论文探讨了重整化群与深度学习之间的深层联系,为两者之间的等价性提供了理论支持。

关键词:

#重整化群
#RenormalizationGroup
#尺度变化
#ScaleChange
#自相似性
#SelfSimilarity
#有效理论
#EffectiveTheory
#计算简化
#ComputationalSimplification
#参数分类
#ParameterClassification
#尺度联系
#ScaleConnection
#深度学习
#DeepLearning
#特征提取
#FeatureExtraction
#层次结构
#HierarchicalStructure

总字数: 约 4800 字

参考信息源链接:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

认知计算 茂森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值