摊丁入亩:让“富的更富,穷的更穷”税制,变成“多田多缴,无田不缴”的公平公式
一、核心结论:摊丁入亩是古代税制的一次“公平秤”改革
“就像把税收的‘大头’从人头转移到土地,让有田的人多承担,没田的人少负担,实现税负的相对公平。”
二、公式推演与类比解释
1. 核心公式对比表
公式名称 | 数学表达式 | 通俗解释 | 类比场景 |
---|---|---|---|
改革前:丁税为主 | T o l d = N × t d i n g + A × r m u T_{old} = N \times t_{ding} + A \times r_{mu} Told=N×tding+A×rmu | 人头税是主要税收,土地税为辅 | 交税像“按人头”收门票,地多地少影响不大 |
改革后:亩税为主 | T n e w = A × ( r m u + N × t d i n g A t o t a l ) T_{new} = A \times (r_{mu} + \frac{N \times t_{ding}}{A_{total}}) Tnew=A×(rmu+AtotalN×tding) | 土地税包含原人头税,税收与土地面积直接相关 | 交税像“按土地面积”收费,地越多交的越多 |
税负公平度指标 | F = T r i c h / A r i c h T p o o r / A p o o r F = \frac{T_{rich} / A_{rich}}{T_{poor} / A_{poor}} F=Tpoor/ApoorTrich/Arich (理想值:F=1) | 衡量富人和穷人单位土地面积上的税负差异 | 公平秤是否平衡,两边放同样面积的土地,税负应相等 |
2. 核心公式详解
公式1:改革前税收公式 T o l d = N × t d i n g + A × r m u T_{old} = N \times t_{ding} + A \times r_{mu} Told=N×tding+A×rmu
参数 | 数学符号 | 类比解释 | 取值范围 |
---|---|---|---|
总税收 | T o l d T_{old} Told | 国家从一个地区收取的总税款 | 货币单位 |
人口数量 | N N N | 地区内需要缴纳人头税的人数 | 正整数 |
人头税税率 | t d i n g t_{ding} tding | 每个人需要缴纳的人头税金额 | 货币单位/人 |
土地面积 | A A A | 地区内的土地总面积 | 面积单位 |
土地税税率 | r m u r_{mu} rmu | 每单位土地面积需要缴纳的土地税金额 | 货币单位/面积单位 |
通俗解释: 改革前,税收就像两部分组成的水桶。人头税 N × t d i n g N \times t_{ding} N×tding 是一个固定的“大水龙头”,不管你家贫富,只要有人头就要出水(交税)。土地税 A × r m u A \times r_{mu} A×rmu 是一个小水龙头,你有地就出水,没地就没水,但水量相对人头税小很多。 这就导致了**“富室阡陌相连,所纳丁银不及贫户十一”** 的不公平现象——富人地多,但人少,交的人头税少;穷人可能地少甚至没地,但人多,人头税负担重。
打比方: 想象古代村庄收“门票”维持运营。 改革前,主要按人头收门票,每人固定交一份。 张员外家土地连片,但一家几口人,交几份门票; 李老汉家地少人多,一家十几口,要交十几份门票。 结果李老汉家虽然穷,但交的“门票”反而比张员外家多,这就是不公平。
公式2:改革后税收公式 T n e w = A × ( r m u + N × t d i n g A t o t a l ) T_{new} = A \times (r_{mu} + \frac{N \times t_{ding}}{A_{total}}) Tnew=A×(rmu+AtotalN×tding)
参数 | 数学符号 | 类比解释 | 取值范围 |
---|---|---|---|
总税收 | T n e w T_{new} Tnew | 国家从一个地区改革后收取的总税款 | 货币单位 |
土地面积 | A A A | 纳税人拥有的土地面积 | 面积单位 |
土地税税率 | r m u r_{mu} rmu | 基础土地税率,与改革前土地税率含义类似 | 货币单位/面积单位 |
总人口数量 | N N N | 地区内总人口数量,用于计算人头税总额 | 正整数 |
原人头税税率 | t d i n g t_{ding} tding | 改革前的人头税税率,用于计算人头税总额 | 货币单位/人 |
地区总土地面积 | A t o t a l A_{total} Atota |