自然语言处理:预训练

14.8 来自trans的双向编码器表示(Bert)

  • Bidirectional Encoder Representation from Transformers

14.8.1 从上下文无关 到 上下文敏感

  • NLP中 丰富的多义现象 和 复杂的语义 → \rightarrow 同一词可根据上下文赋予不同的表示

  • 流行的上下文敏感表示:TagLM(language-model augmented sequence tagger)、CoVe(Context Vectors)、ELMo(Embeddings from Language Models)

  • ELMo简洁介绍:

    • 整个序列作为输入,ELMo为 序列中每个词 分配 一个表示函数
    • 具体而言,ELMo将 来自预训练的BiLSTM的所有中间层表示 组合为 输出表示
    • 然后,ELMo的表示 将作为 附加特征 添加到 下游任务的现有监督模型 中,例如将 ELMo的表示 和现有模型中词元的原始表示(如GloVe)连结起来;
  • ELMo优点:

    • 假如ELMo表示后,冻结了 预训练的BiLSTM中的所有权重;
    • 现有的监督模型 是专门为 给定的任务定制的。
    • 利用当时不同任务的不同最佳模型,添加ELMo改进了六种NLP任务的技术水平:情感分析、自然语言推断、SRL、共指消解、NER和Q&A。

14.8.2 从 特定任务 到 不可知任务

  • 即便有ELMo的改进,但 每个解决方案 仍依赖于 一个特定任务的架构。
  • GPT介绍
    • GPT(Generative Pre Training)模型 为 上下文的敏感表示 设计了 通用的任务无关模型。
    • GPT建立在trans解码器的基础上,预训练一个用于表示 文本序列 的LM;
    • GPT运用于 下游任务 时,LM的输出 被送到一个 附加的线性输出层,以预测 任务的标签。
    • GPT在 下游任务的监督学习过程中 对 预训练trans解码器中的所有参数 进行微调;
    • GPT在 自然语言推断、问答、句子相似性、分类等12任务上进行评估,其中9项任务在最小更改的情况下提升了水平。
    • GPT只能向前看(从左到右),即拥有AR特性,无法辨别多义词。

14.8.3 BERT:把两个最好的结合起来

  • ELMo(双向编码特性) + GPT(任务无关,但是 AR特性)

  • Bert使用trans编码器

  • Bert与GPT两点类似:

    • Bert表示 将被输入到一个 附加的线性输出层
    • 根据任务的性质对模型架构进行最小的更改,例如预测 每个词元 与 预测 整个序列。
    • 对预训练trans编码器的所有参数进行微调,而额外的输出层将从头开始训练
  • ELMo、GPT和BERT的比较:
    在这里插入图片描述

  • Bert改进了11种NLP任务的水平,有以下4个大类:

    • 单一文本分类(情感分析)
    • 文本对分类(如自然语言推断)
    • Q&A
    • 文本标记(如NER)
  • 2018年:ELMo → \rightarrow GPT、Bert

  • 概念上简单经验上强大的 自然语言深度表示 已经统治了 各种NLP任务的解决方案。

  • 本章:深入了解Bert的训练前准备

  • 下章:针对下游应用的Bert微调

import torch
from torch import nn
from d2l import torch as d2l
D:\ana3\envs\nlp_prac\lib\site-packages\numpy\_distributor_init.py:32: UserWarning: loaded more than 1 DLL from .libs:
D:\ana3\envs\nlp_prac\lib\site-packages\numpy\.libs\libopenblas.IPBC74C7KURV7CB2PKT5Z5FNR3SIBV4J.gfortran-win_amd64.dll
D:\ana3\envs\nlp_prac\lib\site-packages\numpy\.libs\libopenblas.XWYDX2IKJW2NMTWSFYNGFUWKQU3LYTCZ.gfortran-win_amd64.dll
  stacklevel=1)

14.8.4 输入表示

  • Bert输入序列 明确地表示 单个文本文本对,即一个Bert输入序列可以包括 一个文本序列两个文本序列
  • Bert输入序列格式:特殊类别词元<cls>、文本序列标记、特殊分隔词元<sep> 的连结
  • 如输入文本对时,Bert输入序列格式为:<cls>、第一个文本序列的标记、<sep>、第二个文本序列标记、 <sep>
# 输入句子(对),返回 Bert输入序列的标记 及其 相应的片段索引
def get_tokens_and_segments(tokens_a, tokens_b=None):
    """获取输入序列的词元 及其 片段索引"""
    tokens = ['<cls>'] + tokens_a + ['<sep>']
    
    # 0 和 1 分别标记片段 A 和 B
    segments = [0] * (len(tokens_a) + 2)
    if tokens_b is not None:
        tokens += tokens_b + ['<sep>']
        segments += [1] * (len(tokens_b) + 1)
    return tokens, segments
  • 与原始trans编码器不同,Bert使用 可学习的位置嵌入。如下图,表明:Bert输入序列的嵌入式 词元嵌入、片段嵌入 和 位置嵌入 的
    在这里插入图片描述
# 与原始trans编码器不同,Bert使用 片段嵌入 和 可学习的位置嵌入。
class BERTEncoder(nn.Module):
    """Bert编码器"""
    def __init__(self, vocab_size, num_hiddens, norm_shape, ffn_num_input,
                 ffn_num_hiddens, num_heads, num_layers, dropout, 
                 max_len=1000, key_size=768, query_size=768, value_size=768,
                 **kwargs):
        super(BERTEncoder, self).__init__(**kwargs)
        self.token_embedding = nn.Embedding(vocab_size, num_hiddens)
        self.segment_embedding = nn.Embedding(2, num_hiddens)
        self.blks = nn.Sequential()
        # 构造多个块
        for i in range(num_layers):
            self.blks.add_module(f'{i}', d2l.EncoderBlock(
                key_size, query_size, value_size, num_hiddens, norm_shape,
                ffn_num_input, ffn_num_hiddens, num_heads, dropout, True))
        # Bert中,位置嵌入是 可学习的,因此我们创建一个 足够长的位置嵌入参数
        self.pos_embedding = nn.Parameter(torch.randn(1, max_len, num_hiddens))
        
    def forward(self, tokens, segments, valid_lens):
        # 在下面代码中,x形状不变:(批量大小,最大序列长度,num_hiddens)
        x = self.token_embedding(tokens) + self.segment_embedding(segments)
        x = x + self.pos_embedding.data[:, :x.shape[1], :]
        for blk in self.blks:
            x = blk(x, valid_lens)
        return x
# 演示BertEncoder的前向推断,创建一个实例并初始化 其参数
vocab_size, num_hiddens, ffn_num_hiddens, num_heads = 1000, 768, 1024, 4
norm_shape, ffn_num_input, num_layers, dropout = [768], 768, 2, 0.2
encoder = BERTEncoder(vocab_size, num_hiddens, norm_shape, ffn_num_input,
                      ffn_num_hiddens, num_heads, num_layers, dropout)
# 定义tokens: 长度为8的2个输入序列,每个词元是 词表的索引
# 使用输入tokens的BERTEncoder的前向推断 返回 编码结果
# 每个词元 由 向量表示,
# 向量长度由超参数 num_hiddens(trans编码器的隐藏大小,即隐藏单元数) 定义
tokens = torch.randint(0, vocab_size, (2, 8))
segments = torch.tensor([[0, 0, 0, 0, 1, 1, 1, 1],[0, 0, 0, 1, 1, 1, 1, 1]])
encoded_x = encoder(tokens, segments, None)
encoded_x.shape

# torch.Size([2, 8, 768])
# 输出解释:2句话、每句8个词,每个词维度是768
torch.Size([2, 8, 768])

14.8.5 预训练任务

  • BertEncoder的前向推断:给出了 输入文本的 每个词元和插入的特殊标记<cls><sep>Bert表示
  • 之后,将使用这些表示来计算 预训练Bert的损失函数,它包括两个任务:
    • 掩蔽LM(Masked Language Modeling)
    • NSP(Next Sentence Prediction)

掩蔽LM(Masked Language Modeling)

  • 对比
    • LM:使用 左侧的上下文 预测 词元;
    • Bert:随机掩蔽词元(15%) 并使用 来自双向上下文的词元,以 自监督的方式 预测 掩蔽词元。
  • 由于掩蔽词元<nask>不会出现在微调中,为了避免 预训练 和 微调 的这种不匹配,如果为预测而掩蔽 某词元,则在输入中将其替换为:
    • 80%时间 为 特殊的<mask>词元
    • 10%时间 为 随机词元(这种偶然的噪声 鼓励 Bert在其双向上下文编码中不那么偏向于掩蔽词元(尤其是当标签词元保持不变时))
    • 10%时间 不做改变
  • 下面的MaskLM类 来预测 掩蔽标记。预测使用 单隐藏层的 多层感知机
  • 前向推断中,输入为:1. BertEncoder的编码结果 2.用于预测的词元位置;输出:这些位置的预测结果
class MaskLM(nn.Module):
    """Bert的maskedLM"""
    def __init__(self, vocab_size, num_hiddens, num_inputs=768, **kwargs):
        super(MaskLM, self).__init__(**kwargs)
        self.mlp = nn.Sequential(nn.Linear(num_inputs, num_hiddens),
                                 nn.ReLU(),
                                 nn.LayerNorm(num_hiddens),
                                 nn.Linear(num_hiddens, vocab_size))
        
    def forward(self, x, pred_positions):
        num_pred_positions = pred_positions.shape[1]
        pred_positions = pred_positions.reshape(-1)
        batch_size = x.shape[0]
        batch_idx = torch.arange(0, batch_size)
        # 假设 batch_size = 2, num_pred_positions=3
        # 那么 batch_idx 是 np.array([0, 0, 0, 1, 1])
        batch_idx = torch.repeat_interleave(batch_idx, num_pred_positions)
        masked_x = x[batch_idx, pred_positions]
        masked_x = masked_x.reshape((batch_size, num_pred_positions, -1))
        mlm_y_hat = self.mlp(masked_x)
        return mlm_y_hat
mlm = MaskLM(vocab_size, num_hiddens) # 初始化该类
mlm_positions = torch.tensor([[1, 5, 2], [6, 1, 5]]) # 序列中需进行预测的三个索引
mlm_y_hat = mlm(encoded_x, mlm_positions) # 两个bert输入序列,预测索引
mlm_y_hat.shape
torch.Size([2, 3, 1000])
# 计算交叉熵损失
mlm_y = torch.tensor([[7,8,9],[10,20,30]]) # 真实标签
loss = nn.CrossEntropyLoss(reduction='none')
mlm_l= loss(mlm_y_hat.reshape((-1, vocab_size)), mlm_y.reshape(-1))
mlm_l.shape
torch.Size([6])
mlm_l
tensor([7.3066, 6.4002, 6.6777, 7.2173, 7.4744, 6.8937],
       grad_fn=<NllLossBackward0>)

NSP(Next Sentence Prediction)

  • 尽管masked LM能够编码 双向上下文 来表示单词,但无法显示地建模 文本对之间的逻辑关系。故有 NSP任务:
    • 50%时间 句子对 为“真”的连续句子
    • 50%时间 第二个句子从语料库中随机抽取,标记为“假”
  • 下面的NextSentencePred类功能:使用 单隐藏层的MLP 来预测 第二个句子是否是Bert输入序列中第一个句子的下一个句子。
  • 由于 trans编码器中的self-att,特殊词元<cls>的Bert表示 已经对 输入的两个句子 进行了编码
  • 故,MLP分类器的 输出层(self.output)以x作为输入,x 是 MLP隐藏层输出,而MLP隐藏层的输入 是 编码后的<cls>词元。(编码后的<cls>词元 → \rightarrow MLP 隐 藏 层 \color{#FF1000}{隐藏层} → \rightarrow x → \rightarrow 输 出 层 \color{#FF1000}{输出层} → \rightarrow 预测结果)
class NextSentencePred(nn.Module):
    """Bert的下一句预测任务(NSP)"""
    def __init__(self, num_inputs, **kwargs):
        super(NextSentencePred, self).__init__(**kwargs)
        self.output = nn.Linear(num_inputs, 2)
        
    def forward(self, x):
        # x: (batch_size, num_hiddens)
        return self.output(x)
# 测试
encoded_x = torch.flatten(encoded_x, start_dim=1)
# print(encoded_x, encoded_x.shape)
# NSP的输入形状:(batch_size, num_hiddens)
nsp = NextSentencePred(encoded_x.shape[-1])
nsp_y_hat = nsp(encoded_x)
nsp_y_hat, nsp_y_hat.shape
(tensor([[-0.3838, -0.2278],
         [ 0.2239,  0.2473]], grad_fn=<AddmmBackward0>),
 torch.Size([2, 2]))
# 计算 两个二元分类 的交叉熵损失
nsp_y = torch.tensor([0, 1])
nsp_l = loss(nsp_y_hat, nsp_y)
nsp_l, nsp_l.shape
(tensor([0.7742, 0.6815], grad_fn=<NllLossBackward0>), torch.Size([2]))
  • bert预训练语料库(无需人工标注语料):
    • 图书语料库——8亿个单词
    • 英文维基百科——25亿个单词

14.8.6 整合代码

  • 最终的损失函数:masked-LM损失函数 和 NSP损失函数 的线性组合
  • 实例化 BERTEncoder、MaskedLM和NextSentencePred三个类 来 定义BERTModel类
  • 前向推断返回:
    • 编码后的 BERT表示——encoded_x
    • masked-LM模型预测结果——mlm_y_hat
    • NSP预测结果——nsp_y_hat
class BERTModel(nn.Module):
    """BERT模型"""
    def __init__(self, vocab_size, num_hiddens, norm_shape, ffn_num_input,
                 ffn_num_hiddens, num_heads, num_layers, dropout,
                 max_len=1000, key_size=768, query_size=768, value_size=768,
                 hid_in_features=768, mlm_in_features=768, 
                 nsp_in_features=768):
        super(BERTModel, self).__init__()
        self.encoder = BERTEncoder(vocab_size, num_hiddens, norm_shape,
                    ffn_num_input, ffn_num_hiddens, num_heads, num_layers,
                    dropout, max_len=max_len, key_size=key_size,
                    query_size=query_size, value_size=value_size)
        self.hidden = nn.Sequential(nn.Linear(hid_in_features, num_hiddens),
                                   nn.Tanh())
        self.mlm = MaskLM(vocab_size, num_hiddens, mlm_in_features) # 任务1
        self.nsp = NextSentencePred(nsp_in_features) # 任务2
        
    def forward(self, tokens, segments, valid_lens=None):
        encoded_x = self.encoder(tokens, segments, valid_lens)
        if pred_positions is not None:
            mlm_y_hat = self.mlm(encoded_x, pred_positions) # 任务1
        else:
            mlm_y_hat = None
        # 用于NSP的MLP分类器的隐藏层, 0是“<cls>”标记的索引
        nsp_y_hat = self.nsp(self.hidden(encoded_x[:, 0, :])) # 任务2
        return encoded_x, mlm_y_hat, nsp_y_hat
  • 小结
    • word2vec和GloVe等词嵌入模型:与上下文无关、每个词仅有一个向量、难处理一词多义或复杂语义;
    • ELMo和GPT:词的表示依赖于 它们的上下文
    • ELMo:对上下文双向编码、但使用特定任务的架构
    • GPT:任务无关、但是AR特性
    • Bert结合上述两者优点——上下文双向编码、只需对大量NLP任务进行最小架构更改
    • Bert输入序列的嵌入:词元嵌入、片段嵌入 和 位置嵌入的和
    • 预训练包括:masked-LM 和 NSP

14.9 用于预训练BERT的数据集

  • 为了训练上述实现的BERT模型,需以合适的格式生成数据集,以适应这两个任务
  • 两个棘手的问题
    • 最初的bert数据集:图书语料库 和 英语维基百科(两个庞大的语料库的合集)。
    • 现成的bert预训练模型 不适合 医学特定领域的应用。
  • 因此,需要有定制的数据集;故使用 较小数据集WikiText-2 进行演示
  • 与预训练word2vec的PTB数据集相比,WikiText-2优点
    • 保留了原来的标点符号,适用于下一句的预测
    • 保留了原来的大小写和数字
    • 大了一倍以上
import os, random, torch
from d2l import torch as d2l
  • WikiText-2数据集中:
    • 每行一个段落,标点符号和词元之间插入空格
    • 保留至少两句话的段落
    • 简单起见,本节用句号作为分隔符来拆分句子
    • 后续讨论更复杂的句子拆分技术。
# 下载数据
d2l.DATA_HUB['wikitext-2'] = (
'https://s3.amazonaws.com/research.metamind.io/wikitext/'
'wikitext-2-v1.zip', '3c914d17d80b1459be871a5039ac23e752a53cbe')

def _read_wiki(data_dir):
    file_name = os.path.join(data_dir, 'wiki.train.tokens')
    with open(file_name, 'r', encoding='utf-8') as f:
        lines = f.readlines()
    # 大写字母转换为小写字母
    paragraphs = [line.strip().lower().split(' . ')
                  for line in lines if len(line.split(' . ')) >= 2]
    random.shuffle(paragraphs)
    return paragraphs

14.9.1 为预训练任务定义辅助函数

  • 定义辅助函数,用以 稍后将 原始文本语料库 转换为 理想格式的数据集,以预训练BERT

NSP任务的数据

  • 生成二分类任务的训练样本
def  _get_next_sentence(sentence, next_sentence, paragraphs):
    # 50% 的概率是下一句话
    if random.random() < 0.5:
        is_next = True
    else:
        # paragraphs 是三重列表的嵌套
        next_sentence = random.choice(random.choice(paragraphs)) # 随机选择下一句话
        is_next = False
    return sentence, next_sentence, is_next
  • 下面的函数作用:从输入paragraph生成用于下一句预测的训练样本
#                       句子列表,每个句子是词元列表      bert输入序列的最大长度
def _get_nsp_data_from_paragraph(paragraph, paragraphs, vocab, max_len):
    nsp_data_from_paragraph = []
    for i in range(len(paragraph) - 1):
        tokens_a, tokens_b, is_next = _get_next_sentence( # 确定这一对是不是正样本
            paragraph[i], paragraph[i + 1], paragraphs)
        # 考虑一个`<cls>`词元和两个`<sep>`词元
        if len(tokens_a) + len(tokens_b) + 3 > max_len: # 不使用超过最大长度的样本
            continue
        tokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b)
        nsp_data_from_paragraph.append((tokens, segments, is_next)) # 加入最终的数据集中
    return nsp_data_from_paragraph

生成masked-LM任务的样本

  • 参数说明
    • tokens:bert输入序列的 词元的列表
    • candidate_pred_positions: 不包括特殊字符的bert输入序列的 词元索引的列表(特殊词元在该任务中不被预测)
    • num_mlm_preds: 预测的数量(选择15%要预测的随机词元)
  • 每个预测位置的三种情况:
    • 特殊的“掩码”词元
    • 随机词元替换
    • 保持不变
  • 该函数的返回值:
    • 可能替换后的 输入词元
    • 发生预测的 词元索引
    • 这些预测的 标签
def _replace_mlm_tokens(tokens, candidate_pred_positions, num_mlm_preds, vocab):
    # 为 masked-LM 的输入创建 新的词元副本,其中输入可能包含 替换的`<mask>`或随机词元
    mlm_input_tokens = [token for token in tokens]
    pred_positions_and_labels = []
    # 打乱后用于在 masked-LM 任务中获取 15%的随机词元 进行预测
    random.shuffle(candidate_pred_positions)
    for mlm_pred_position in candidate_pred_positions:
        if len(pred_positions_and_labels) >= num_mlm_preds:
            break
        masked_token = None
        # 80%时间:将词替换为`<mask>`词元
        if random.random() < 0.8:
            masked_token = "<mask>"
        else:
            # 10%的时间:保持词不变
            if random.random() < 0.5:
                masked_token = tokens[mlm_pred_position]
            # 10%的时间:用 随机词 替换该词
            else:
                masked_token = random.choice(vocab.idx_to_token)
        mlm_input_tokens[mlm_pred_position] = masked_token
        pred_positions_and_labels.append(
            (mlm_pred_position, tokens[mlm_pred_position]))
    return mlm_input_tokens, pred_positions_and_labels
#      带掩码的输入词元、  (发生预测的词元索引、要预测的词)
  • 以下函数 调用 前述函数,输入为:
    • BERT输入序列(tokens)
  • 返回:
    • 输入词元的索引
    • 发生预测的词元索引
    • 这些预测的标签索引
def _get_mlm_data_from_tokens(tokens, vocab):
    candidate_pred_positions = []
    # tokens 是 一个字符串列表
    for i, token in enumerate(tokens):
        # 在 masked-LM任务 中不会预测特殊词元
        if token in ['<cls>', '<sep>']:
            continue
        candidate_pred_positions.append(i)
    # masked-LM 任务中预测 15%的随机词元
    num_mlm_preds = max(1, round(len(tokens) * 0.15))
    mlm_input_tokens, pred_position_and_labels = _replace_mlm_tokens(
        tokens, candidate_pred_positions, num_mlm_preds, vocab)
    pred_position_and_labels = sorted(pred_position_and_labels, 
                                     key=lambda x: x[0])
    pred_positions = [v[0] for v in pred_position_and_labels]
    mlm_pred_labels = [v[1] for v in pred_position_and_labels]
    return vocab[mlm_input_tokens], pred_positions, vocab[mlm_pred_labels]

14.9.2 将 文本 转换为 预训练数据集

  • 在为 bert预训练 定制 一个Dataset类之前,需定义辅助函数将<mask>附加到输入
  • 参数examples:_get_nsp_data_from_paragraph 和 _get_mlm_data_from_tokens的输出
def _pad_bert_inputs(examples, max_len, vocab):
    max_num_mlm_preds = round(max_len * 0.15) # 最大预测词的数量
    all_token_ids, all_segments, valid_lens = [], [], []
    all_pre_positions, all_mlm_weights, all_mlm_labels = [], [], []
    nsp_labels = []
    
    for (token_ids, pred_positions, mlm_pred_label_ids, segments, is_next) in examples:
        all_token_ids.append(torch.tensor(token_ids + [vocab['<pad>']] * (
            max_len - len(token_ids)), dtype=torch.long))
        all_segments.append(torch.tensor(segments + [0] *(
            max_len - len(segments)), dtype=torch.long))
        # valid_lens 不包括 <pad>的计数
        valid_lens.append(torch.tensor(len(token_ids), dtype=torch.float32))
        all_pre_positions.append(torch.tensor(pred_positions + [0] * (
            max_num_mlm_preds - len(pred_positions)), dtype=torch.long))
        # 填充 词元的预测 将通过乘以 0 权重
        all_mlm_weights.append(
            torch.tensor([1.0] * len(mlm_pred_label_ids) + [0.0] * (
                max_num_mlm_preds - len(pred_positions)),
                dtype=torch.float32))
        all_mlm_labels.append(torch.tensor(mlm_pred_label_ids + [0] * (
            max_num_mlm_preds - len(mlm_pred_label_ids)), dtype=torch.long))
        nsp_labels.append(torch.tensor(is_next, dtype=torch.long))
    return (all_token_ids, all_segments, valid_lens, all_pre_positions, 
            all_mlm_weights, all_mlm_labels, nsp_labels)
  • 以下的_WikiTextDataset类包括:
    • 两个训练任务的训练样本 的辅助函数
    • 用于 填充输入 的辅助函数
  • __getitem__函数:任意访问 WikiText-2语料库的一对句子生成的预训练样本(masked-LM和NSP)
  • 最初的bert模型使用词表为3w的wordpiece嵌入,此处简单使用d2l.tokenize函数进行词元化。过滤掉少于5词的低频词元。
class _WikiTextDataset(torch.utils.data.Dataset):
    def __init__(self, paragraphs, max_len):
        # 输入paragraphs[i] 是代表段落的 句子字符串列表
        # 而输出paragraphs[i] 是代表 段落的句子列表,其中每个句子都是 词元列表
        paragraphs = [d2l.tokenize(
            paragraph, token='word') for paragraph in paragraphs]
        sentences = [sentence for paragraph in paragraphs
                     for sentence in paragraph]
        self.vocab = d2l.Vocab(sentences, min_freq=5, reserved_tokens=[
            '<pad>', '<mask>', '<cls>', '<sep>'
        ])
        # 获取 NSP的数据
        examples = []
        for paragraph in paragraphs:
            examples.extend(_get_nsp_data_from_paragraph(
                paragraph, paragraphs, self.vocab, max_len))
        # 获取 masked_LM 的数据
        examples = [(_get_mlm_data_from_tokens(tokens, self.vocab)
                     + (segments, is_next))
                    for tokens, segments, is_next in examples]
        # 填充输入
        (self.all_token_ids, self.all_segments, self.valid_lens,
         self.all_pred_positions, self.all_mlm_weights,
         self.all_mlm_labels, self.nsp_labels) = _pad_bert_inputs(
            examples, max_len, self.vocab)
        
    def __getitem__(self, idx):
        return (self.all_token_ids[idx], self.all_segments[idx],
                self.valid_lens[idx], self.all_pred_positions[idx],
                self.all_mlm_weights[idx], self.all_mlm_labels[idx],
                self.nsp_labels[idx])
    
    def __len__(self):
        return len(self.all_token_ids)
  • load_data_wiki函数:
    • _read_wiki函数:下载并生成WikiText-2数据集
    • _WikiTextDataset类:生成预训练样本
def load_data_wiki(batch_size, max_len):
    """加载WikiText-2数据集"""
    num_workers = d2l.get_dataloader_workers() # 返回4
    num_workers = 0
    data_dir = d2l.download_extract('wikitext-2', 'wikitext-2')
    paragraphs = _read_wiki(data_dir)
    train_set = _WikiTextDataset(paragraphs, max_len)
    train_iter = torch.utils.data.DataLoader(train_set, batch_size,
                                            shuffle=True, num_workers=num_workers)
    return train_iter, train_set.vocab
# 打印出小批量的 bert预训练样本 的形状
# 批量大小:512,;bert输入序列的最大长度为:64
batch_size, max_len = 512, 64
train_iter, vocab = load_data_wiki(batch_size, max_len)

for (tokens_x, segments_x, valid_lens_x, pred_positions_x, mlm_weights_x,
     mlm_y, nsp_y) in train_iter:
    print(tokens_x.shape, segments_x.shape, valid_lens_x.shape, pred_positions_x.shape, 
          mlm_weights_x.shape, mlm_y.shape, nsp_y.shape)
    break
torch.Size([512, 64]) torch.Size([512, 64]) torch.Size([512]) torch.Size([512, 10]) torch.Size([512, 10]) torch.Size([512, 10]) torch.Size([512])
len(vocab), vocab.idx_to_token[10045]
(20256, 'hospitallers')
  • 小结:
    • Spacy 和 NLTK 可以拆分句子
    • 数据集WikiText-2比PTB大两倍多

14.10 预训练Bert

  • 14.8节:实现Bert模型
  • 14.9节:从WikiText-2数据集生成 预训练样本
  • 本节:在WikiText-2数据集上对 BERT 进行 预训练
import torch, os, random
from torch import nn
from d2l import torch as d2l
  • 首先,加载 WikiText-2数据集 作为 小批量的预训练样本,用于 两个任务
  • 批量大小为:512;
  • bert输入序列的最大长度:64(原始bert中为512)
batch_size, max_len = 512, 64
train_iter, vocab = load_data_wiki(batch_size, max_len)

14.10.1 预训练 BERT

  • 各种版本的bert:
    • 原始基本模型:12层trans编码器块、768个隐藏层单元(隐藏大小)和12个自注意头
    • 大模型:12层trans编码器块、1024个隐藏层单元(隐藏大小)和16个自注意头
    • 本模型:2层trans编码器块、128个隐藏层单元(隐藏大小)和2个自注意头
net = d2l.BERTModel(len(vocab), num_hiddens=128, norm_shape=[128],
                    ffn_num_input=128, ffn_num_hiddens=256, num_heads=2,
                    num_layers=2, dropout=0.2, key_size=128, query_size=128,
                    value_size=128, hid_in_features=128, mlm_in_features=128,
                    nsp_in_features=128)
devices = d2l.try_all_gpus()
loss = nn.CrossEntropyLoss()
# 训练前,定义一个辅助函数计算(给定训练样本)两个预测任务的损失。
# 注意:BERT预训练的最终损失是 两个任务损失的和
def _get_batch_loss_bert(net, loss, vocab_size, tokens_x, segments_x, valid_lens_x,
                         pred_positions_x, mlm_weights_x, mlm_y, nsp_y):
    # 前向传播
    _, mlm_y_hat, nsp_y_hat = net(tokens_x, segments_x, valid_lens_x.reshape(-1),
                                 pred_positions_x)
    # 计算masked-LM的损失
    mlm_l = loss(mlm_y_hat.reshape(-1, vocab_size), mlm_y.reshape(-1)) * \
            mlm_weights_x.reshape(-1, 1)
    mlm_l = mlm_l.sum() / (mlm_weights_x.sum() + 1e-8)
    
    # 计算NSP的损失
    nsp_l = loss(nsp_y_hat, nsp_y)
    
    # 最终损失
    l = mlm_l + nsp_l
    return mlm_l, nsp_l, l
# 该函数定义了在WikiText-2数据集上预训练BERT(net)的过程
# 参数num_steps指定了 训练的迭代步数
def train_bert(train_iter, net, loss, vocab_size, devices, num_steps):
    net = nn.DataParallel(net, device_ids=devices).to(devices[0])
    trainer = torch.optim.Adam(net.parameters(), lr = 0.01)
    step, timer = 0, d2l.Timer()
    animator = d2l.Animator(xlabel='step', ylabel='loss',
                            xlim=[1, num_steps], legend=['mlm', 'nsp'])
    
    # masked-LM损失的和,NSP损失的和,句子对的数量,计数
    metric = d2l.Accumulator(4)
    num_steps_reached = False
    while step < num_steps and not num_steps_reached:
        for tokens_x, segments_x, valid_lens_x, pred_positions_x, \
            mlm_weights_x, mlm_y, nsp_y in train_iter:
            
            tokens_x = tokens_x.to(devices[0])
            segments_x = segments_x.to(devices[0])
            valid_lens_x = valid_lens_x.to(devices[0])
            pred_positions_x = pred_positions_x.to(devices[0])
            mlm_weights_x = mlm_weights_x.to(devices[0])
            mlm_y, nsp_y = mlm_y.to(devices[0]), nsp_y.to(devices[0])
            
            trainer.zero_grad()
            timer.start()
            mlm_l, nsp_l, l = _get_batch_loss_bert(
                net, loss, vocab_size, tokens_x, segments_x, valid_lens_x, 
                pred_positions_x, mlm_weights_x, mlm_y, nsp_y)
            l.backward()
            trainer.step()
            metric.add(mlm_l, nsp_l, tokens_x.shape[0], 1)
            timer.stop()
            
            animator.add(step+1, (metric[0] / metric[3], metric[1] / metric[3]))
            step += 1
            if step == num_steps:
                num_steps_reached = True
                break
                
    print(f'MLM loss {metric[0] / metric[3]:.3f},'
          f'NSP loss {metric[1] / metric[3]:.3f}')
    print(f'{metric[2] / timer.sum():.1f} sentence pairs/sec on '
          f'{str(devices)}')
train_bert(train_iter, net, loss, len(vocab), devices, 80)
MLM loss 5.289,NSP loss 0.718
7336.8 sentence pairs/sec on [device(type='cuda', index=0)]

在这里插入图片描述

14.10.2 用BERT表示文本

  • 预训练bert后,可以用它表示 单个文本、文本对 或 其中的任何词元
  • 下面的函数返回 tokens_a和tokens_b中所有词元的Bert(net)表示
def get_bert_encoding(net, tokens_a, tokens_b=None):
    tokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b)
    tokens_ids = torch.tensor(vocab[tokens], device=devices[0]).unsqueeze(0)
    segments = torch.tensor(segments, device=devices[0]).unsqueeze(0)
    valid_len = torch.tensor(len(tokens), device=devices[0]).unsqueeze(0)
    
    encoded_x, _, _ = net(tokens_ids, segments, valid_len)
    return encoded_x
# 对于句子“a crane is flying”,打印出该词元的bert表示的前三个元素
tokens_a = ['a', 'crane', 'is', 'flying']
encoded_text = get_bert_encoding(net, tokens_a) # torch.Size([1, 6, 128])
# 词元:'<cls>', 'a', 'crane', 'is', 'flying', '<sep>'
encoded_text_cls = encoded_text[:, 0, :]
encoded_text_crane = encoded_text[:, 2, :]
encoded_text.shape, encoded_text_cls.shape, encoded_text_crane[0][:3]
(torch.Size([1, 6, 128]),
 torch.Size([1, 128]),
 tensor([-0.6029,  1.5879, -2.2356], device='cuda:0', grad_fn=<SliceBackward0>))
# 对于句子“a crane driver came”和“he just left”.
# encoded_pair[:,0,:]是来自预训练bert的整个句子对的编码结果
tokens_a, tokens_b = ['a', 'crane', 'driver', 'came'], ['he', 'just', 'left']
encoded_pair = get_bert_encoding(net, tokens_a, tokens_b)
# 词元::'<cls>', 'a', 'crane', 'driver', 'came', '<sep>', 'he', 'just', 'left', '<sep>'
encoded_pair_cls = encoded_pair[:, 0, :]
encoded_pair_crane = encoded_pair[:, 2, :]
encoded_pair.shape, encoded_pair_cls.shape, encoded_pair_crane[0][:3]
(torch.Size([1, 10, 128]),
 torch.Size([1, 128]),
 tensor([-0.7168,  1.8172, -0.0902], device='cuda:0', grad_fn=<SliceBackward0>))
  • 小结
    • 下一章为 下游NLP应用 微调 预训练的BERT模型
    • 原来的BERT有两个版本(1.1亿参数 和 3.4亿参数)
    • 预训练BERT之后,可以用它来表示 单个文本、文本对 或 其中的任何词元
    • 同一个词在不同的上下文中有不同的bert表示:bert是上下文敏感
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值