在一个 2 x 3 的板上(
board
)有 5 块砖瓦,用数字1~5
来表示, 以及一块空缺用0
来表示.一次移动定义为选择
0
与一个相邻的数字(上下左右)进行交换.最终当板
board
的结果是[[1,2,3],[4,5,0]]
谜板被解开。给出一个谜板的初始状态,返回最少可以通过多少次移动解开谜板,如果不能解开谜板,则返回 -1 。
示例:
输入:board = [[1,2,3],[4,0,5]] 输出:1 解释:交换 0 和 5 ,1 步完成输入:board = [[1,2,3],[5,4,0]] 输出:-1 解释:没有办法完成谜板输入:board = [[4,1,2],[5,0,3]] 输出:5 解释: 最少完成谜板的最少移动次数是 5 , 一种移动路径: 尚未移动: [[4,1,2],[5,0,3]] 移动 1 次: [[4,1,2],[0,5,3]] 移动 2 次: [[0,1,2],[4,5,3]] 移动 3 次: [[1,0,2],[4,5,3]] 移动 4 次: [[1,2,0],[4,5,3]] 移动 5 次: [[1,2,3],[4,5,0]]输入:board = [[3,2,4],[1,5,0]] 输出:14提示:
board
是一个如上所述的 2 x 3 的数组.board[i][j]
是一个[0, 1, 2, 3, 4, 5]
的排列.
这道题可以将每一个状态的broad 用一个六位数p表示,再将滑动次数 * 1000000加上p记为一个状态,用p的不同判断状态的不同,然后用bfs即可:
//773 -- 13ms -- 80.00%
public int slidingPuzzle(int[][] board) {
int r1 = 123450;
int r2 = 123540;
int b = 0;
for (int[] i : board) {
for (int j : i) {
b = b * 10 + j;
}
}
Queue<Integer> q = new ArrayDeque<>();
Set<Integer> set = new HashSet<>();
q.add(b);
int k = 0;
while (!q.isEmpty()) {
int p = q.poll();
k = p / 1000000;
int t = p % 1000000;
if (t == r2) {
return -1;
}
if (t == r1) {
return k;
}
int i = 6;
int tt = t;
while (tt / 10 * 10 != tt) {
tt = tt / 10;
i--;
}
switch (i) {
case 6: {
int newp = t - t % 10000 + t % 1000 + t % 10000 / 1000;
if(!set.contains(newp)) {
set.add(newp);
q.add((k + 1) * 1000000 + newp);
}
newp = t - t % 100 + t % 100 / 10;
if(!set.contains(newp)) {
set.add(newp);
q.add((k + 1) * 1000000 + newp);
}
break;
}
case 5: {
int newp = t - t / 10000 % 10 * 9990;
if(!set.contains(newp)) {
set.add(newp);
q.add((k + 1) * 1000000 + newp);
}
newp = t - t / 100 % 10 * 90;
if(!set.contains(newp)) {
set.add(newp);
q.add((k + 1) * 1000000 + newp);
}
newp = t + t % 10 * 9;
if(!set.contains(newp)) {
set.add(newp);
q.add((k + 1) * 1000000 + newp);
}
break;
}
case 4: {
int newp = t - t / 100000 * 99900;
if(!set.contains(newp)) {
set.add(newp);
q.add((k + 1) * 1000000 + newp);
}
newp = t + t / 10 % 10 * 90;
if(!set.contains(newp)) {
set.add(newp);
q.add((k + 1) * 1000000 + newp);
}
break;
}
case 3: {
int newp = t - t % 100000 + t % 1000 + t % 100000 / 10000 * 1000;
if(!set.contains(newp)) {
set.add(newp);
q.add((k + 1) * 1000000 + newp);
}
newp = t - t % 10 + t % 10 * 1000;
if(!set.contains(newp)) {
set.add(newp);
q.add((k + 1) * 1000000 + newp);
}
break;
}
case 2: {
int newp = t - t / 100000 * 90000;
if(!set.contains(newp)) {
set.add(newp);
q.add((k + 1) * 1000000 + newp);
}
newp = t + t % 10000 / 1000 * 9000;
if(!set.contains(newp)) {
set.add(newp);
q.add((k + 1) * 1000000 + newp);
}
newp = t + t % 100 / 10 * 9990;
if(!set.contains(newp)) {
set.add(newp);
q.add((k + 1) * 1000000 + newp);
}
break;
}
case 1: {
int newp = t + t / 10000 * 90000;
if(!set.contains(newp)) {
set.add(newp);
q.add((k + 1) * 1000000 + newp);
}
newp = t - t / 100 % 10 * 100 + t / 100 % 10 * 100000;
if(!set.contains(newp)) {
set.add(newp);
q.add((k + 1) * 1000000 + newp);
}
break;
}
}
}
return -1;
}