南阳理工acm 456 邮票分你一半(常规动态规划)

邮票分你一半

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 3
描述
     小珂最近收集了些邮票,他想把其中的一些给他的好朋友小明。每张邮票上都有分值,他们想把这些邮票分成两份,并且使这两份邮票的分值和相差最小(就是小珂得到的邮票分值和与小明的差值最小),现在每张邮票的分值已经知道了,他们已经分好了,你知道最后他们得到的邮票分值和相差多少吗?
输入
第一行只有一个整数m(m<=1000),表示测试数据组数。
接下来有一个整数n(n<=1000),表示邮票的张数。
然后有n个整数Vi(Vi<=100),表示第i张邮票的分值。
输出
输出差值,每组输出占一行。
样例输入
2
5
2 6 5 8 9
3
2 1 5
样例输出
0
2

想法:注意此题不要用搜索+动态规划去优化做,直接常规动态规划就好,虽然前面325 题zb的生日与此题相似。

此题与325 题区别在于东西的值有大小;325题东西的值可以很大,所以用搜索+动态规划优化方法,此题,东西的值较小,应用常规动态规划合适。

思路没什么好说的:0-1背包问题改版

先排序,再想好动态转移方程;

给下动态转移方程:data[j]=max(data[j-a[i]]+a[i],data[j]);

代码:

#include<stdio.h>
#include<string.h>
int a[1010];
int data[100010];
int max(int x,int y)
{
    return x>y?x:y;
}
int main()
{
    int n,N;
    scanf("%d",&N);
    while(N--)
    {
    memset(a,0,sizeof(a));
    memset(data,0,sizeof(data));
    scanf("%d",&n);
    int i,j,t;
    int sum=0,sum1;
    for(i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        sum=sum+a[i];
    }
    sum1=sum/2;
    for(i=1;i<=n-1;i++)
    {
        for(j=1;j<=n-i;j++)
        {
        if(a[j]>a[j+1])
        {
        t=a[j+1];a[j+1]=a[j];a[j]=t;
        }
        }
    }
    for(i=1;i<=n-1;i++)
    {
        for(j=sum1;j>=a[i];j--)
        {
        data[j]=max(data[j-a[i]]+a[i],data[j]);
        }
    }
    printf("%d\n",sum-2*data[sum1]);
    }
    return 0;
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值