邮票分你一半
-
描述
-
小珂最近收集了些邮票,他想把其中的一些给他的好朋友小明。每张邮票上都有分值,他们想把这些邮票分成两份,并且使这两份邮票的分值和相差最小(就是小珂得到的邮票分值和与小明的差值最小),现在每张邮票的分值已经知道了,他们已经分好了,你知道最后他们得到的邮票分值和相差多少吗?
-
输入
-
第一行只有一个整数m(m<=1000),表示测试数据组数。
接下来有一个整数n(n<=1000),表示邮票的张数。
然后有n个整数Vi(Vi<=100),表示第i张邮票的分值。
输出
- 输出差值,每组输出占一行。 样例输入
-
2 5 2 6 5 8 9 3 2 1 5
样例输出
-
0 2
-
第一行只有一个整数m(m<=1000),表示测试数据组数。
想法:注意此题不要用搜索+动态规划去优化做,直接常规动态规划就好,虽然前面325 题zb的生日与此题相似。
此题与325 题区别在于东西的值有大小;325题东西的值可以很大,所以用搜索+动态规划优化方法,此题,东西的值较小,应用常规动态规划合适。
思路没什么好说的:0-1背包问题改版
先排序,再想好动态转移方程;
给下动态转移方程:data[j]=max(data[j-a[i]]+a[i],data[j]);
代码:
#include<stdio.h>
#include<string.h>
int a[1010];
int data[100010];
int max(int x,int y)
{
return x>y?x:y;
}
int main()
{
int n,N;
scanf("%d",&N);
while(N--)
{
memset(a,0,sizeof(a));
memset(data,0,sizeof(data));
scanf("%d",&n);
int i,j,t;
int sum=0,sum1;
for(i=1;i<=n;i++)
{
scanf("%d",&a[i]);
sum=sum+a[i];
}
sum1=sum/2;
for(i=1;i<=n-1;i++)
{
for(j=1;j<=n-i;j++)
{
if(a[j]>a[j+1])
{
t=a[j+1];a[j+1]=a[j];a[j]=t;
}
}
}
for(i=1;i<=n-1;i++)
{
for(j=sum1;j>=a[i];j--)
{
data[j]=max(data[j-a[i]]+a[i],data[j]);
}
}
printf("%d\n",sum-2*data[sum1]);
}
return 0;
}