125-Hadoop-Yarn简单介绍:
Yarn 资源调度器
Yarn 是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式
的操作系统平台,而 MapReduce 等运算程序则相当于运行于操作系统之上的应用程序。
YARN 主要由 ResourceManager、NodeManager、ApplicationMaster 和 Container 等组件
构成。
注:图片来源,bilibili尚硅谷大数据视频。
Yarn 工作机制
(1)MR 程序提交到客户端所在的节点。
(2)YarnRunner 向 ResourceManager 申请一个 Application。
(3)RM 将该应用程序的资源路径返回给 YarnRunner。
(4)该程序将运行所需资源提交到 HDFS 上。
(5)程序资源提交完毕后,申请运行 mrAppMaster。
(6)RM 将用户的请求初始化成一个 Task。
(7)其中一个 NodeManager 领取到 Task 任务。
(8)该 NodeManager 创建容器 Container,并产生 MRAppmaster。
(9)Container 从 HDFS 上拷贝资源到本地。
(10)MRAppmaster 向 RM 申请运行 MapTask 资源。
(11)RM 将运行 MapTask 任务分配给另外两个 NodeManager,另两个 NodeManager 分
别领取任务并创建容器。
(12)MR 向两个接收到任务的 NodeManager 发送程序启动脚本,这两个 NodeManager
分别启动 MapTask,MapTask 对数据分区排序。
(13)MrAppMaster 等待所有 MapTask 运行完毕后,向 RM 申请容器,运行 ReduceTask。
(14)ReduceTask 向 MapTask 获取相应分区的数据。
(15)程序运行完毕后,MR 会向 RM 申请注销自己。
HDFS、YARN、MapReduce三者关系
作业提交过程之YARN
作业提交过程之HDFS & MapReduce
作业提交全过程详解
(1)作业提交
第 1 步:Client 调用 job.waitForCompletion 方法,向整个集群提交 MapReduce 作业。
第 2 步:Client 向 RM 申请一个作业 id。
第 3 步:RM 给 Client 返回该 job 资源的提交路径和作业 id。
第 4 步:Client 提交 jar 包、切片信息和配置文件到指定的资源提交路径。
第 5 步:Client 提交完资源后,向 RM 申请运行 MrAppMaster。
(2)作业初始化
第 6 步:当 RM 收到 Client 的请求后,将该 job 添加到容量调度器中。
第 7 步:某一个空闲的 NM 领取到该 Job。
第 8 步:该 NM 创建 Container,并产生 MRAppmaster。
第 9 步:下载 Client 提交的资源到本地。
(3)任务分配
第 10 步:MrAppMaster 向 RM 申请运行多个 MapTask 任务资源。
第 11 步:RM 将运行 MapTask 任务分配给另外两个 NodeManager,另两个 NodeManager
分别领取任务并创建容器。
(4)任务运行
第 12 步:MR 向两个接收到任务的 NodeManager 发送程序启动脚本,这两个
NodeManager 分别启动 MapTask,MapTask 对数据分区排序。
第13步:MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。
第 14 步:ReduceTask 向 MapTask 获取相应分区的数据。
第 15 步:程序运行完毕后,MR 会向 RM 申请注销自己。
(5)进度和状态更新
YARN 中的任务将其进度和状态(包括 counter)返回给应用管理器, 客户端每秒(通过
mapreduce.client.progressmonitor.pollinterval 设置)向应用管理器请求进度更新, 展示给用户。
(6)作业完成
除了向应用管理器请求作业进度外, 客户端每 5 秒都会通过调用 waitForCompletion()来
检查作业是否完成。时间间隔可以通过 mapreduce.client.completion.pollinterval 来设置。作业
完成之后, 应用管理器和 Container 会清理工作状态。作业的信息会被作业历史服务器存储
以备之后用户核查。
检查作业是否完成。时间间隔可以通过 mapreduce.client.completion.pollinterval 来设置。作业
完成之后, 应用管理器和 Container 会清理工作状态。作业的信息会被作业历史服务器存储
以备之后用户核查。