95-100-hive-压缩存储

51 篇文章 1 订阅
10 篇文章 0 订阅

95-压缩存储-优化:

存储格式了解即可

Hadoop 压缩配置

MR 支持的压缩编码

在这里插入图片描述

为了支持多种压缩/解压缩算法,Hadoop 引入了编码/解码器,如下表所示:

在这里插入图片描述

压缩性能的比较:

在这里插入图片描述

压缩参数配置

要在 Hadoop 中启用压缩,可以配置如下参数(mapred-site.xml 文件中):

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7YHnVCGD-1669900592771)(png/image-20210902094905415.png)]

hadoop支持的压缩方式

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1ML1AoHh-1669900592773)(png/image-20210902095354533.png)]

开启 Map 输出阶段压缩(MR引擎)

开启 map 输出阶段压缩可以减少 job 中 map 和 Reduce task 间数据传输量。具体配置如

下:

1)案例实操:

(1)开启 hive 中间传输数据压缩功能

hive (default)>set hive.exec.compress.intermediate=true;

(2)开启 mapreduce 中 map 输出压缩功能

hive (default)>set mapreduce.map.output.compress=true;

(3)设置 mapreduce 中 map 输出数据的压缩方式

hive (default)>set mapreduce.map.output.compress.codec=org.apache.hadoop.io.compress.SnappyCodec;

(4)执行查询语句

hive (default)> select count(ename) name from emp;

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5ACYux9T-1669900592775)(png/image-20210902100729169.png)]

开启 Reduce 输出阶段压缩

当 Hive 将 输 出 写 入 到 表 中 时 , 输出内容同样可以进行压缩。属性hive.exec.compress.output控制着这个功能。用户可能需要保持默认设置文件中的默认值false,这样默认的输出就是非压缩的纯文本文件了。用户可以通过在查询语句或执行脚本中设置这个值为true,来开启输出结果压缩功能。

1)案例实操:

(1)开启 hive 最终输出数据压缩功能

hive (default)>set hive.exec.compress.output=true;

(2)开启 mapreduce 最终输出数据压缩

hive (default)>set mapreduce.output.fileoutputformat.compress=true;

(3)设置 mapreduce 最终数据输出压缩方式

hive (default)> set mapreduce.output.fileoutputformat.compress.codec =org.apache.hadoop.io.compress.SnappyCodec;

(4)设置 mapreduce 最终数据输出压缩为块压缩

hive (default)> set mapreduce.output.fileoutputformat.compress.type=BLOCK;

(5)测试一下输出结果是否是压缩文件

hive (default)> insert overwrite local directory '/opt/module/hive/datas/distribute-result' select * from emp distribute by deptno sort by empno desc;

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kF60JqVc-1669900592776)(png/image-20210902101031692.png)]

文件存储格式

Hive 支持的存储数据的格式主要有:行存:TEXTFILE 、SEQUENCEFILE、列存:ORC、PARQUET

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bujo09zP-1669900592776)(png/image-20210902101659212.png)]

TextFile 格式

默认格式,数据不做压缩,磁盘开销大,数据解析开销大。可结合 Gzip、Bzip2 使用,但使用 Gzip 这种方式,hive 不会对数据进行切分,从而无法对数据进行并行操作。

Orc 格式

Orc (Optimized Row Columnar)是 Hive 0.11 版里引入的新的存储格式。如下图所示可以看到每个 Orc 文件由 1 个或多个 stripe 组成,每个 stripe 一般为 HDFS的块大小,每一个 stripe 包含多条记录,这些记录按照列进行独立存储,对应到 Parquet中的 row group 的概念。每个 Stripe 里有三部分组成,分别是 Index Data,Row Data,Stripe Footer:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-LODR4G0P-1669900592777)(png/image-20210902102253354.png)]

1)Index Data:一个轻量级的 index,默认是每隔 1W 行做一个索引。这里做的索引应该只是记录某行的各字段在 Row Data 中的 offset。

2)Row Data:存的是具体的数据,先取部分行,然后对这些行按列进行存储。对每个列进行了编码,分成多个 Stream 来存储。

3)Stripe Footer:存的是各个 Stream 的类型,长度等信息。每个文件有一个 File Footer,这里面存的是每个 Stripe 的行数,每个 Column 的数据类型信息等;每个文件的尾部是一个 PostScript,这里面记录了整个文件的压缩类型以及FileFooter 的长度信息等。在读取文件时,会 seek 到文件尾部读 PostScript,从里面解析到File Footer 长度,再读 FileFooter,从里面解析到各个 Stripe 信息,再读各个 Stripe,即从后往前读。

Parquet 格式

Parquet 文件是以二进制方式存储的,所以是不可以直接读取的,文件中包括该文件的数据和元数据,因此 Parquet 格式文件是自解析的。

(1)行组(Row Group):每一个行组包含一定的行数,在一个 HDFS 文件中至少存储一个行组,类似于 orc 的 stripe 的概念。

(2)列块(Column Chunk):在一个行组中每一列保存在一个列块中,行组中的所有列连续的存储在这个行组文件中。一个列块中的值都是相同类型的,不同的列块可能使用不同的算法进行压缩。

(3)页(Page):每一个列块划分为多个页,一个页是最小的编码的单位,在同一个列块的不同页可能使用不同的编码方式。通常情况下,在存储 Parquet 数据的时候会按照 Block 大小设置行组的大小,由于一般情况下每一个 Mapper 任务处理数据的最小单位是一个 Block,这样可以把每一个行组由一个 Mapper 任务处理,增大任务执行并行度。Parquet 文件的格式。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eNmheLfa-1669900592778)(png/image-20210902111534110.png)]

上图展示了一个 Parquet 文件的内容,一个文件中可以存储多个行组,文件的首位都是该文件的 Magic Code,用于校验它是否是一个 Parquet 文件,Footer length 记录了文件元数据的大小,通过该值和文件长度可以计算出元数据的偏移量,文件的元数据中包括每一个行组的元数据信息和该文件存储数据的 Schema 信息。除了文件中每一个行组的元数据,每一页的开始都会存储该页的元数据,在 Parquet 中,有三种类型的页:数据页、字典页和索引页。数据页用于存储当前行组中该列的值,字典页存储该列值的编码字典,每一个列块中最多包含一个字典页,索引页用来存储当前行组下该列的索引,目前 Parquet 中还不支持索引页。

主流文件存储格式对比实验

从存储文件的压缩比和查询速度两个角度对比。存储文件的压缩比测试:

1)测试数据

2)TextFile

(1)创建表,存储数据格式为 TEXTFILE

create table log_text (track_time string,url string,session_id string,referer string,ip string,city_id string) row format delimited fields terminated by '\t' stored as textfile;;

(2)向表中加载数据

hive (default)> load data local inpath '/opt/module/hive/datas/log.data'  into table log_text ;

(3)查看表中数据大小

hive (default)> dfs -du -h /hive_db/log_text;;
18.13 M /user/hive/warehouse/log_text/log.data

3)ORC

(1)创建表,存储数据格式为 ORC

create table log_orc(track_time string,url string,session_id string,referer string,ip string,end_user_id string,city_id string) row format delimited fields terminated by '\t' stored as orc
tblproperties("orc.compress"="NONE"); -- 设置 orc 存储不使用压缩

(2)向表中加载数据

hive (default)> insert into table log_orc select * from log_text;

(3)查看表中数据大小

hive (default)> dfs -du -h /hive_db/log_orc/ ;
7.7 M /user/hive/warehouse/log_orc/000000_0

4)Parquet

(1)创建表,存储数据格式为 parquet

create table log_parquet(track_time string,url string,session_id string,referer string,ip string,end_user_id string,city_id string) row format delimited fields terminated by '\t' stored as parquet;

(2)向表中加载数据

hive (default)> insert into table log_parquet select * from log_text;

(3)查看表中数据大小

hive (default)> dfs -du -h /hive_db/log_parquet/;
13.1 M /user/hive/warehouse/log_parquet/000000_0

存储文件的对比总结:

ORC > Parquet > textFile

存储文件的查询速度测试:

(1)TextFile

hive (default)> insert overwrite local directory  '/opt/module/hive/datas/speed/log_text' select substring(url,1,4) from log_text;

(2)ORC

hive (default)> insert overwrite local directory  '/opt/module/hive/datas/speed/log_orc' select substring(url,1,4) from log_orc;

(3)Parquet

hive (default)> insert overwrite local directory '/opt/module/hive/datas/speed/log_parquet' select substring(url,1,4) from log_parquet;

存储文件的查询速度总结:查询速度相近。

存储和压缩结合

官网:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC

ORC 存储方式的压缩:注意:所有关于 ORCFile 的参数都是在 HQL 语句的 TBLPROPERTIES 字段里面出现

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NMj0QSyS-1669900592779)(png/image-20210902141755453.png)]

1)创建一个 ZLIB 压缩的 ORC 存储方式

(1)建表语句

create table log_orc_zlib(track_time string,url string,session_id string,referer string,ip string,end_user_id string,city_id string) row format delimited fields terminated by '\t' stored as orc
tblproperties("orc.compress"="ZLIB");

(2)插入数据

insert into log_orc_zlib select * from log_text;

(3)查看插入后数据

hive (default)> dfs -du -h /hive_db/log_orc_zlib/ ;
2.78 M /user/hive/warehouse/log_orc_none/000000_0

2)创建一个SNAPPY 压缩的 ORC 存储方式

(1)建表语句

create table log_orc_snappy(track_time string,url string,session_id string, referer string,ip string,end_user_id string,city_id string) row format delimited fields terminated by '\t' stored as orc
tblproperties("orc.compress"="SNAPPY");

(2)插入数据

insert into log_orc_snappy select * from log_text;

(3)查看插入后数据

hive (default)> dfs -du -h /hive_db/log_orc_snappy/;
3.75 M /user/hive/warehouse/log_orc_snappy/000000_0

ZLIB 比 Snappy 压缩的还小。原因是 ZLIB 采用的是 deflate 压缩算法。比 snappy 压缩的

压缩率高。

3)创建一个 SNAPPY 压缩的 parquet 存储方式

(1)建表语句

create table log_parquet_snappy(track_time string,url string,session_id string,referer string,ip string,end_user_id string,city_id string) row format delimited fields terminated by '\t' stored as parquet
tblproperties("parquet.compression"="SNAPPY");

(2)插入数据

insert into log_parquet_snappy select * from log_text;

(3)查看插入后数据

hive (default)> dfs -du -h /hive_db/log_parquet_snappy/;
6.39 MB /user/hive/warehouse/ log_parquet_snappy /000000_0

4)存储方式和压缩总结

在实际的项目开发当中,hive 表的数据存储格式一般选择:orc 或 parquet。压缩方式一般选择 snappy,lzo。

ssion"=“SNAPPY”);


(2)插入数据

insert into log_parquet_snappy select * from log_text;


(3)查看插入后数据

hive (default)> dfs -du -h /hive_db/log_parquet_snappy/;
6.39 MB /user/hive/warehouse/ log_parquet_snappy /000000_0


**4**)存储方式和压缩总结

在实际的项目开发当中,hive 表的数据存储格式一般选择:orc 或 parquet。压缩方式一般选择 snappy,lzo。





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值