本文来自Coursera深度学习系列课程的作业,请不要作为商业用途使用!
Convolutional Neural Networks: Step by Step
Welcome to Course 4’s first assignment! In this assignment, you will implement convolutional (CONV) and pooling (POOL) layers in numpy, including both forward propagation and (optionally) backward propagation.
Notation:
- Superscript [l] [ l ] denotes an object of the lth l t h layer.
- Example: a[4] a [ 4 ] is the 4th 4 t h layer activation. W[5] W [ 5 ] and b[5] b [ 5 ] are the 5th 5 t h layer parameters.
Superscript (i) ( i ) denotes an object from the ith i t h example.
- Example: x(i) x ( i ) is the ith i t h training example input.
Lowerscript i i denotes the entry of a vector.
- Example: a[l]i a i [ l ] denotes the ith i t h entry of the activations in layer l l , assuming this is a fully connected (FC) layer.
, nW n W and nC n C denote respectively the height, width and number of channels of a given layer. If you want to reference a specific layer l l , you can also write , n[l]W n W [ l ] , n[l]C n C [ l ] .
- nHprev n H p r e v

本文详细介绍了卷积神经网络(CNN)的步骤,包括零填充、卷积运算、前向传播以及可选的反向传播。讨论了CNN层的构建块,如零填充、池化层及其反向传播。通过实现这些基本函数,你将能够理解CNN的工作原理,并用于构建深度学习模型。
最低0.47元/天 解锁文章
2307

被折叠的 条评论
为什么被折叠?



