机器学习常用微积分表

导数

  • 函数y = f(x) 在点x0的某个邻域内有定义, 则当自变量x在x0处取得增量 deltax,函数输出值也相应取得增量deltay
  • 如果deltay与deltax的比值在delta_x趋于0时的极限存在,则f(x)在x0处的导数存在,即f(x)在x0处可导。该极限即为f(x)在x0处的导数,记作f’(x0)。
  • 如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

导函数

  • 若函数 f(x) 在其定义域包含的某区间 I 内每一个点都可导,则成f(x)在区间I内可导
    这时对于 I 内每一个确定的 x 值,都对应着 f(x) 的一个确定的导数值,如此一来就构成了一个新的函数 x -> f’(x) 这个函数称作原来函数f(x) 的导函数,记作f’(x)。

  • 有两种情况: i) 在某点可导:若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。

    ii)在某区间可导:若某函数在其定义域包含的某个区间内,每一个点都可导,那么就说这个函数在该区间内可导。

微分

  • 设函数 y = f(x)在某区间I内有定义,且在其中一点x0处是可微的。

  • 即:如果函数y = f(x)的增量deltay = f(x0 + deltax) - f(x0) 可表示为deltay = Adeltax

    • o(deltax),其中A是不依赖于deltax的常数,而o(deltax)是比deltax高阶的无穷小。

    其中,Adeltax称作函数f(x)在点x0向应用自变量增量deltax的微分,记作dy,即dy = Adx, dy是deltay的线性主部,dx = deltax.

【偏增量】:

  • 设函数z = f(x, y) 在点 (x0, y0)的某邻域内有定义,则f(x + deltax,y) – f(x,y)和 f(x, y
    • deltay) - f(x, y) 都是它的偏增量。

【全增量】

  • 设函数z = f(x, y) 在点 (x0, y0) 的某邻域内有定义, (x + deltax,y +
    deltay)为这邻域内的任意一点,则称这两点的函数值之差f(x + deltax,y + deltay)-
    f(x,y)为函数在点(x0, y0)对应自变量deltax,deltay的全增量,记作delta_z。

【偏导数】

  • 一个多元函数中,在除了某个变量之外其他变量都保持恒定不变的情况下,关于这个变量的导数,是偏导数。
  • 求偏导数时,除了当前变量之外的变量,被认为与当前变量无关。例如求f(x,y)在(x0,y0)处关于x的偏导数,则此时假定y与x无关。

【全导数】

  • 求全导数中,允许其他变量随着当前变量变化。也就是说求f(x,y) 在(x0,y0)处的全导数的时候,我们假定y随 x变化。

【偏微分】

  • 指多元函数z=f(x,y)的分别针对x和y微分。f(x,y)关于x和y的偏微分分别为:fx’(x,y)dx 和 fy’(x,y)dy。

【全微分】

  • 指多元函数z=f(x,y)的全增量delta_z的线性主部,记作dz。
    一个多元函数在某点的某邻域内的各个偏导数都存在,且偏导函数在该点都连续,则在该点该多元函数的全微分存在。

【偏微分和全微分的关系】:dz= fx’(x,y)dx + fy’(x,y)dy —— 全微分等于偏微分之和。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值