时间限制:1.0s 内存限制:256.0MB
问题描述
每年冬天,北大未名湖上都是滑冰的好地方。北大体育组准备了许多冰鞋,可是人太多了,每天下午收工后,常常一双冰鞋都不剩。
每天早上,租鞋窗口都会排起长龙,假设有还鞋的m个,有需要租鞋的n个。现在的问题是,这些人有多少种排法,可以避免出现体育组没有冰鞋可租的尴尬场面。(两个同样需求的人(比如都是租鞋或都是还鞋)交换位置是同一种排法)
输入格式
两个整数,表示m和n
输出格式
一个整数,表示队伍的排法的方案数。
样例输入
3 2
样例输出
5
数据规模和约定
m,n∈[0,18]
问题分析
题解:
通过分析可以知道,每一步的操作都与上一步相关,可以采用递归的方法求。
存在两个出口,一个是当借的人数多于还的人数时,此种排法不存在,返回0;
另一个是当借的人数为0时,后面还的人数无论多少都是一样的排法,即返回1。
最后递归查找,这次的结果就是上一次的相加(这次要么是借的人多了一个,要么是还的人多了一个),那么相加的结果就是这次的答案。详情见代码
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
int m = cin.nextInt();//还鞋
int n = cin.nextInt();//借鞋
System.out.println(find(n, m));
}
private static int find(int n, int m) {
if(n > m)
return 0;
if(n == 0)
return 1;
return find(n-1, m) + find(n, m-1);
}
}