AI-知识库搭建(二)GPT-Embedding模型使用 Embedding模型是一种将高维度的离散数据(如文本、图像、音频等)映射到低维度的连续向量空间的技术。"Text-Embedding-Ada-002" 是OpenAIAP|中的一个预训练文本嵌入模型,它属于"Ada" 系列的-个变种。Ada系列的模型专注于文本分类和语言理解任务,它在理解语义和推断方面有较好的性能。处理后的向量就可以直接存入向量数据库,为最后的问题答案匹配准备。通用语言模型,"Text-Embedding-Ada-002"可能更适合于需要较高语义理解和推断能力的任务。
AI-知识库搭建(一)腾讯云向量数据库使用 腾讯云向量数据库(Tencent Cloud VectorDB)是一款全托管的自研企业级分布式数据库服务,专用于存储、检索、分析多维向量数据。腾讯云向量数据库不仅能为大模型提供外部知识库,提高大模型回答的准确性,还可广泛应用于推荐系统、自然语言处理等 AI 领域。将已知的问答知识,问题和答案转变成向量存储在向量数据库,在查找答案时,输入问题,将问题向量化,匹配向量库的问题,将向量相似度最高的问题筛选出来,将答案提交。腾讯云的向量库使用方式基本就是这样着,在这里简单的使用到了他的插入和向量查询功能。
Elasticsearch深入学习 (四) 文档查询 根据指定字段的精确值进行匹配查询。例如,搜索title字段为 "Example Document1" 的文档。:根据指定字段的内容进行全文匹配查询。例如,搜索description字段包含关键词 "example" 的文档。用于精确匹配包含指定短语的文档。它会将查询字符串视为一个完整的短语,确保文档中的某个字段包含完全相同的短语。:通过组合多个查询条件,使用逻辑运算符(如 must、should、must_not)来进行复合查询。创建索引,并指定title字段的类型为keyword,用于精确查询。
Elasticsearch深入学习 (四) Java接入整合(High-Level REST client) Elasticsearch深入学习 (四) Java接入整合(High-Level REST client)
SpringSecurity Unsupported algorithm ‘xx256‘ 使用我们标准的基于属性的配置,我们可以进一步设置我们期望令牌签名的算法。当授权服务器使用RS256 以外的算法对令牌进行签名时,通常需要这样做。让我们继续通过添加jws-algorithm属性来更改配置:spring: security: oauth2: resourceserver: jwt: // ... jws-algorithm: ES256我们还可以将我们的资源服务器配置为信任多种算法进行签名验...
KubeSphere (二) DevOps 安装 目录一、官方教程二、具体操作三、验证结果一、官方教程KubeSphere DevOps 系统在KubeSphere首次安装后,再安装DevOps组件二、具体操作左上角平台管理--》集群管理自定义资源CRD-》搜索clusterconfiguration,点击进去点击右边的内容-编辑配置文件找到devops,把enabled:false 变成true,后更新保存三、验证结果保存后自动更新下载(5分钟左右),通过命令可查看具体日...