AI模型提示词(prompt)优化-实战(一)

一、prompt作用

用户与AI模型沟通的核心工具,用于引导模型生成特定内容、控制输出质量、调整行为模式,并优化任务执行效果,从而提升用户体验和应用效果

二、prompt结构

基本结构

角色:设定一个角色,给AI模型确定一个基准,知道这个prompt角色是干什么的,擅长做什么。

例:你是一名大学教授,精通各种历史问题

任务(指令):明确具体的任务内容,需要做什么事情。

例:解答学生各种问题

上下文(背景):在什么环境、前提、背景下、前置的条件

例子:现在正在进行课堂提问环节,有学生向你提问

约束(规则/限制):限制一些内容,要求等

例子:1、回答要简短,使用100个字以内的内容,回答

           2、回答完成后,需要加一句“还有什么不明白的吗,同学”

输入数据:提问的内容

例子:老师,朱元璋是怎么当上皇帝的

备注:输入数据,可以放在提示词中,也可以在下次的问答中,提出

输出格式:要求以什么格式返回

例子:

首先说:这个同学的问题很好

然后说:回答问题的内容

案例:提供案例,AI模型去理解,去模仿

例子:

问:老师,刘备怎么认识关羽的

答:这个同学的问题很好,黄巾之乱爆发后,东汉朝廷为了平叛,各地纷纷组织力量镇压黄巾军。刘备在涿县看到招兵榜文后,一声叹息,引出了张飞。两人在村里的店中喝酒聊天,关羽随后也进了这家店,三人一见如故,最终在张飞家后的桃园中结拜为兄弟。还有什么不明白的吗,同学。

汇总 

角色:你是一名大学教授,精通各种历史问题
任务(指令):解答学生各种问题
上下文(背景):现在正在进行课堂提问环节,有学生向你提问
约束:1、回答要简短,使用100个字以内的内容,回答  
           2、回答完成后,需要加一句“还有什么不明白的吗,同学”
输出格式: 首先说:这个同学的问题很好
                   然后说:回答问题的内容
案例: 问:老师,刘备怎么认识关羽的
答:这个同学的问题很好,黄巾之乱爆发后,东汉朝廷为了平叛,各地纷纷组织力量镇压黄巾军。刘备在涿县看到招兵榜文后,一声叹息,引出了张飞。两人在村里的店中喝酒聊天,关羽随后也进了这家店,三人一见如故,最终在张飞家后的桃园中结拜为兄弟。还有什么不明白的吗,同学。

你理解吗,理解回复“是”

三、prompt类型

嵌套式的提示词(非GPS、非智能体)

输入内容,嵌套到提示词内。常用直接在上下文的聊天中

提示词

1. 指令(Instruction):请总结以下文本的主要内容。
2. 输入数据(Input Data):文本:[今日是个好天气,我准备和朋友小明一去骑单车去河边钓鱼,一直到晚上]
3. 上下文(Context):总结不超过50字。
4. 输出指示器(Output Indicator):输出格式:\n### 总结\n{总结内容}

常见的AIGC聊天窗口

全局式的提示词

填写一次prompt后,后面二次输入只需内容即可。(上下文的长度通常有限制,各平台不同,通常10次以后,prompt的输入就会无效)

例子1

提示词

1. 指令(Instruction):请根据输入内容总结。
2. 输入数据(Input Data):输入内容:[XXXXXX]
3. 背景信息(Context):总结不超过50字。
4. 输出指示器(Output Indicator):输出格式:\n### 总结\n{总结内容}


输入

输入内容:我买的商品有质量问题,包装也破损了,非常不满意!


例子2

1. 指令(Instruction):根据输入内容,分析总结。
2. 背景信息(Context):你是一个语言文学大师,总结不超过50字。
3. 输出指示器(Output Indicator):输出格式:\n### 总结\n{总结内容}

输入

输入内容:小明今天需要骑单车去郊外露营,和他的小伙伴一起

以下两款都提供可以自己设计prompt,类似“智能体”应用

 腾讯元宝 - 轻松工作 多点生活
豆包

微软的openai

四、优化

简单任务:分解复杂目标

AI对线性逻辑更敏感,多任务处理易导致信息丢失

  • 错误示范:
    "分析今年市场趋势并预测明年经济走势"

  • 优化方案:
    ① 列出2023年各季度GDP增长率、CPI指数
    ② 对比近三年行业投资分布图
    ③ 基于上述数据预测2024年Q2经济走势

具体任务:量化关键参数
  • 三维度具体化法

    1. 范围限定(时间/空间)

    2. 形式要求(格式/字数)

    3. 内容框架(要素/角度)

  • 对比案例

    • 模糊指令:
      "介绍法国旅游"

    • 具体指令:
      "用表格形式列出巴黎3个冷门博物馆:需包含建馆时间、特色藏品、参观时长(控制在200字内)"

避免使用不明确的描述
  • 操作框架

    1. 明确输出形式(代码/文案/图表)

    2. 定义质量维度(深度/广度/严谨性)

    3. 设定验证条件(如通过单元测试/查重率<5%)

  • 典型场景

    • 模糊需求:
      "生成有创意的产品方案"

    • 明确需求:
      "设计智能水杯方案:需包含①紫外线杀菌功能 ②饮水习惯追踪算法 ③3种差异化材质选择(陶瓷/钛合金/竹纤维)"

使用“做什么“,不用“不做什么”
  • 认知心理学依据:人类大脑对否定指令需额外认知转化

  • 重构技巧

    • 否定式:
      "不要写专业术语"
      → 正向式:
      "用小学五年级能理解的语言解释量子力学"

    • 禁止式:
      "避免主观臆断"
      → 规范式:
      "陈述时标注数据来源,如'根据2023年世卫组织报告...'"

五、实战

创建一个prompt提示词

这里借助腾讯的智能体AI,快速生成一个提示词

腾讯元宝 - 轻松工作 多点生活

优化prompt提示词

腾讯元器

学习参考:设计提示的通用技巧 | Prompt Engineering Guide

AI模型提示词(prompt)优化-实战(DeepSeek)(二)-CSDN博客

### 优化 Prompt 提示词的工具和技术 为了更好地优化 Prompt 提示词,可以借助些专门设计的工具和技术。这些工具有助于提升提示词的质量并改善与 AI 系统之间的交互效果[^1]。 #### 常见的优化工具 1. **PromptBase**: 这是个专注于提供高质量 Prompt 设计方案的平台,用户可以在其中找到经过验证的最佳实践案例以及模板,从而快速构建高效的 Prompt 结构[^2]。 2. **Jina AI's PlayGround**: Jina AI 提供了个可视化的 Playground 工具,允许开发者通过拖放组件的方式创建复杂的 Prompt 流程图,并实时预览生成的结果,非常适合初学者学习和高级用户调试复杂逻辑[^3]。 3. **LangChain Framework**: LangChain 是种开源框架,支持多种大模型集成开发环境下的 Prompts 自动化管理功能,它不仅能够存储不同类型的 Prompts 数据库,还提供了灵活调优机制以便适应特定应用场景的需求变化. 4. **Perplexity AI**: Perplexity AI 不仅是款强大的搜索引擎替代品, 同时也内置了许多针对 NLP 任务定制过的 prompts 调试选项,使得即使是非技术背景的人也能轻松上手调整自己的查询语句得到理想回复. #### 实现高效沟通的技术方法 除了上述提到的具体软件外,在实际操作过程中还需要注意以下几个方面来进步增强提示词的表现力: - 明确目标:确保每prompt 都围绕着清晰的目标展开,避免模糊不清的要求导致误解或错误输出. - 细分领域知识:如果涉及专业知识,则应尽可能详尽地描述相关术语及其上下文关系,这样可以帮助算法理解更加深入细致的信息层次结构. - 控制长度适中:过短可能缺乏足够的细节让机器难以把握意图;而冗长又容易引起混淆或者增加计算负担,因此保持简洁明了的同时兼顾全面性是非常重要的平衡点之. ```python def generate_optimized_prompt(task_description, domain_keywords=None): """ Generate an optimized prompt based on task description and optional keywords. Args: task_description (str): A clear statement of what the model should do. domain_keywords (list[str]): Optional list of specialized terms to include. Returns: str: The constructed prompt string ready for use with a language model. """ base_prompt = f"You are tasked with {task_description}." if domain_keywords is not None and isinstance(domain_keywords, list): keyword_section = ", ".join([f'"{kw}"' for kw in domain_keywords]) base_prompt += f"\nPlease consider these key concepts during your work:{keyword_section}" return base_prompt.strip() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值