自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(20)
  • 资源 (3)
  • 收藏
  • 关注

原创 Quartus中FIFO内核使用读出数据异常

问题描述: 在串口收发模块中使用FIFO ,即串口收到的数据先存入FIFO,然后再读出来利用串口发出。读取数据时会以rdempty信号为参考,即如果rdempty信号不为高(FIFO内还有数据),就会一直从FIFO内读取数据并发送出来。 问题:在时钟的上升沿读取FIFO数据,但是数据发送出现错误,最后一个数据会发送两次,具体如下图。查阅了一些资料,本来猜测是因为rdempty信号有延迟,当FIFO内数据为空时,rdempty信号会延迟几个时钟周期才会拉低,因此也采用了包括不适用rd...

2020-10-01 19:24:42 2387

转载 sum函数axis参数详解(转载)

     众所周知,sum不传参的时候,是所有元素的总和。这里就不说了。1 sum函数可以传入一个axis的参数,这个参数怎么理解呢?这样理解:假设我生成一个numpy数组a,如下>>> import numpy as np>>> a = np.array([[[1,2,3,2],[1,2,3,1],[2,3,4,1]],[[...

2019-10-06 10:39:31 1908

原创 机器学习实战(Peter Harrington)-----树回归

对于很多问题来说,其拥有很多特征且特征之间关系复杂,构建全局模型的想法很困难,而且实际中很多问题是非线性问题,不可能使用全局线性模型来拟合任何数据。这时就可以考虑将数据集切分成很多份易建模的数据,然后利用线性回归技术来建模,如果首次切分后仍难以拟合线性模型就继续切分。这里我们介绍CART(Classifiction And Regression Tree,分类回归树)的树构建算法,顾名思义,该算法...

2019-10-03 16:43:16 315

原创 机器学习实战(Peter Harrington)-----AdaBoost

个人理解:AdaBoost是一种算法优化方式。我们都知道,对于一个数据数据集来说(不论是多分类还是二分类问题),如果想要找到一个非常完美的分类方案,即错误率非常小(譬如百分之1)(以下称之为强模型),这是一件非常困难的是,可能需要很多次的迭代计算才能得到一个较好的模型来进行分类,与之相反的是,想找到一个非常简单但是错误率相较来说是比较高(譬如百分之30)的模型(以下称之为弱模型)是很简单的...

2019-09-24 21:35:01 378

原创 机器学习实战(Peter Harrington)-----SVM

SVM:最大间隔分类在理解SVM的过程中,我也参考了很多别人的文章,有些可能我还能找到记录,这部分我将会在文末附上链接,但更多的可能找不到链接了,见谅。另:实际上作者觉得SVM是一个很大的话题,我的理解可能只是其中小小的一部分,如果我说的有问题或者大家有什么补充的,欢迎在评论区留言交流。要想理解SVM,有一些基础知识是需要先了解的,下面我们先介绍一下这些基础知识:1.超平面...

2019-09-15 09:43:28 665 1

原创 机器学习实战(Peter Harrington)-----逻辑回归

逻辑回归:二分类问题核心:激活函数sigmoid ,其中, 梯度上升/下降法 沿梯度最大的方向/反方向去更新权重值,求取函数最大、最小值梯度优化算法:利用梯度算法来更新参数,普通梯度下降法和随机梯度下降算法。sigmoid函数:def sigmoid(inX): return 1.0 / (1 + exp(-inX))普通梯度下...

2019-09-08 20:52:06 461

原创 机器学习实战(Peter Harrington)-----朴素贝叶斯

贝叶斯理论:选择具有最高概率的决策方法:计算数据点属于每个类别的概率,并进行比较贝叶斯理论的核心,实质上就是概率的计算与比较,在这里涉及到条件概率借用书上的例子来解释这个问题首先明确我们的问题,即,现在有一个样本x,有一些类别,我们要做的是求取,即在确定样本是x的情况下,该样本是来自于类别的概率。明确了我们要求解的问题,下面我们介绍贝叶斯准则,贝叶斯准则告诉了我们如何交换条件概...

2019-09-07 16:45:41 498

原创 机器学习实战(Peter Harrington)----决策树

决策树:一种一层一层去进行判决、分类的方法核心:决策树的构造(Reference:周志华--机器学习--第四章-机器学习)在决策树的构造中,实际上就是通过一层一层的划分,将整个数据集划分为许多个分支。在这个过程中,我们希望的是在不断划分的过程里面每个分支的内容会越来越“纯”,也就是每个分支节点所包含的样本尽可能是属于同一个类别的。为了达到这个目的,在每一个分支节点我们需要选择根据哪一个...

2019-09-07 11:54:47 510

原创 机器学习实战(Peter Harrington)-----K-近邻算法

看了一段时间的理论,最近决定看看书写写代码,因此这可能是一个系列博客(针对书中源码的分析、理解)本人知识、能力有限,可能在对代码的分析中有些错误的理解,欢迎大家在评论区指出,踊跃讨论K-近邻算法:根据要判断数据点和各个聚类中点的距离来判断该点属于哪个类本质其实就是计算距离、排序、判决,一种分类算法算法核心实现:# K Proximity algorithmdef cl...

2019-09-06 21:32:01 292

原创 随堂笔记--Tips for Deep Learning

一.改善训练集结果的措施1.采用新的激活函数 在前面关于神经网络的学习中(包括在逻辑回归中的学习),我们所用的激活函数都是sigmoid,即函数,根据我们上一篇中对神经网络使用梯度下降法时使用的BP算法的介绍我们有以下式子: 其中,,对g(z)求导有,这样就会导致一个问题,在使用反向传播算法确定参数优化模型结构时,越靠近输入层的部分随着迭代次数的增加,其梯度值会越...

2019-08-25 20:44:29 318

原创 神经网络--BP算法详解

BP算法,全称是BackPropagation算法,也可以叫做反向传播算法,是一种应用在神经网络中的梯度下降算法。 算法核心:Chain rule----链式求导法则 对于复合函数的求导,我们易知的有以下求导法则: 即可以通过一层层链式求导的规则来对整体求导,同样的,还存在以下链式求导法则: 现在,我们回顾一下之前说的神经...

2019-08-24 21:20:39 1608

原创 机器学习建立回归模型过程中学习率α的确定

本文参考与 国立台湾大学--李宏毅--机器学习 在譬如线性回归,逻辑回归等问题中,我们一般是先建立代价函数,然后使用梯度下降法来求解使代价函数取得最小值的参数,参数更新公式如下: (1) 其中,参数影响的是我们进行梯度...

2019-08-21 15:37:10 2641

原创 吴恩达机器学习---总结

吴老师机器学习公开课完结,本篇博客是基于自己的理解对整个课程内容进行回顾并梳理,由于博主实力有限,可能会有一些理解不到位或者有误的地方,希望大家能指出,理性讨论与交流。综合来看,整个课程可以分成一下四个大块,本篇博客也将按照以下四个模块来谈一些自己的理解。监督学习; 无监督学习; 特殊主题; 实际建立机器学习系统的一些建议。首先来看,机器学习系统整体可以分为监督学习和无监督学...

2019-08-19 21:08:29 1197

原创 吴恩达机器学习---编程练习8

博主只是初学机器学习的新人一枚,这篇博客旨在分享一下吴恩达机器学习课程编程练习8的答案,同时也是相当于自己对这一章的内容做一个回顾,让自己理解的更加的透彻,理性讨论,不喜勿喷本章主题:Anomaly Detection and Recommender Systems(异常检测和推荐系统)1.异常检测假设特征服从正态分布,通过计算整体概率判断是否小于某个值,从而判断是不是正常的。estima...

2019-08-18 19:12:18 230

原创 吴恩达机器学习---编程练习7

博主只是初学机器学习的新人一枚,这篇博客旨在分享一下吴恩达机器学习课程编程练习7的答案,同时也是相当于自己对这一章的内容做一个回顾,让自己理解的更加的透彻,理性讨论,不喜勿喷本练习的主题是K-means Clustering and Principal Component Analysis,即K均值聚类算法和主要成分分析。因此这篇文章也分两部分来讨论,根据作业文件的步骤来分别对K均值聚类算法和P...

2019-08-17 16:08:49 521

原创 吴恩达机器学习---编程练习6

博主只是初学机器学习的新人一枚,这篇博客旨在分享一下吴恩达机器学习课程编程练习6的答案,同时也是相当于自己对这一章的内容做一个回顾,让自己理解的更加的透彻,理性讨论,不喜勿喷本章的主题是Support Vector Machines(SVM),即支持向量机,SVM是一类按照监督学习方式对数据进行二元分类的广义线性分类器,与前面提到的逻辑回归和神经网络类似,而SVM与二者相比,在学习复杂的非线性方...

2019-08-16 14:56:45 294

原创 吴恩达机器学习---随笔1

博主只是初学机器学习的新人一枚,这篇博客旨在对吴恩达机器学习课程第12章的内容做一个简介,分享一些自己的理解,让自己理解的更加的透彻,理性讨论,不喜勿喷Machine learing system design-----机器学习系统设计顾名思义,本章旨在说明一些在设计机器学习系统时会碰到的一些问题以及解决办法,比如对于误判较高系统如何去优化,对于一些具有特殊特点的数据集如何设计学习系统以及对某...

2019-08-15 13:27:34 132

原创 吴恩达机器学习---编程练习5

博主只是初学机器学习的新人一枚,这篇博客旨在分享一下吴恩达机器学习课程编程练习5的答案,同时也是相当于自己对这一章的内容做一个回顾,让自己理解的更加的透彻,理性讨论,不喜勿喷本章的主题是Regularized Linear Regression and Bias v.s. Variance,也就是正则化线性回归和偏差/方差,本章主要讨论的问题就是在线性回归问题中,由于选择的模型不同,对于不同的训...

2019-08-14 20:56:30 416

原创 Matlab中的histeq函数——图像灰度直方图均衡化

首先来看一下没有进行灰度直方图均衡化的图片和经过灰度直方图均衡化后的图片的对比:左为原图,右为经过灰度直方图均衡化处理后的图片,很显然,经过处理之后的图片在对比度方面有了显著的提升,下面附上两张图片的灰度直方图:左图为原图像的灰度直方图,右图为处理后的图片的灰度直方图。从灰度直方图上来看,二者有很大的不同,特别是在灰度值处于100-255范围内的直方图,但细细观察我们会发现,右图相...

2019-08-03 09:42:01 8837 1

原创 http请求headers中的host和referen的区别

刚开始学习爬虫没有多久,在进行爬虫的浏览器伪装时对于其中的referer和host一直不是很明白百度一下,别人给了如下的解释Host头域Host头域指定请求资源的Intenet主机和端口号,必须表示请求url的原始服务器或网关的位置。HTTP/1.1请求必须包含主机头域,否则系统会以400状态码返回。Referer头域Referer 头域允许客户端指定请求uri的源资源地址,...

2019-07-18 19:06:45 3529

OpenCPU_NB1_SDK_V1.1.7z

移远BC26模组 OPENCPU开发 SDK开发包,OPENCPU开发,NB模块

2019-08-28

machine-learning.zip

吴恩达机器学习课程课后习题答案,本人自己编写的答案,说明:没有进行提交测试,但是运行结果和文档内容一致

2019-08-19

OpenCV编程入门,毛星云编著

OpenCV编程入门,内容基于C++,零基础学习OpenCV,适合人群广泛

2018-01-03

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除