对于一个给定的线性变换AAA,其特征向量vvv经过这个线性变换的作用后,得到的新向量仍然与原来的vvv保持在同一条直线上。即
Av=λv
Av=\lambda v
Av=λv
其中λ\lambdaλ为标量,即特征向量的长度在该变换下的缩放比例,称为特征值。
如何求解特征值与特征向量?
假设:
A=[114−2]
A=
\begin{bmatrix}
1 & 1 \\
4 & -2
\end{bmatrix}
A=[141−2]
则:
Av=λvAv−λv=0(A−λI)v=0∣A−λI∣=0∣1−λ14−2−λ∣=0(1−λ)(−2−λ)−1×4=0解得:λ1=2λ2=−3
\begin{align}
Av &=\lambda v \\
Av-\lambda v &= 0 \\
(A-\lambda I)v &= 0\\
|A-\lambda I| &= 0\\
\begin{vmatrix}
1 - \lambda & 1 \\
4 & -2 - \lambda
\end{vmatrix} &= 0\\
(1-\lambda)(-2-\lambda)-1\times 4 &= 0\\ \\
解得:\lambda_1&=2\\ \lambda_2&=-3
\end{align}
AvAv−λv(A−λI)v∣A−λI∣1−λ41−2−λ(1−λ)(−2−λ)−1×4解得:λ1λ2=λv=0=0=0=0=0=2=−3
带回方程,当λ1=2\lambda_1 = 2λ1=2时:
(A−2I)v1=0[−114−4][v11v12]=0得: v11=v12即: v1=[11]
\begin{align}
(A-2I)v_1 &= 0\\
\begin{bmatrix}
-1 & 1\\
4 & -4
\end{bmatrix}
\begin{bmatrix}
v_{11}\\
v_{12}
\end{bmatrix} &= 0\\ \\
得: \ v_{11} &= v_{12}\\
即: \ v_1&=
\begin{bmatrix}
1\\
1
\end{bmatrix}
\end{align}
(A−2I)v1[−141−4][v11v12]得: v11即: v1=0=0=v12=[11]
即y=xy=xy=x这条直线上除零向量外任意一点为一组特征向量解
同理,当λ2=−3\lambda_2=-3λ2=−3时:
v2=[1−4]
v_2=
\begin{bmatrix}
1 \\
-4
\end{bmatrix}
v2=[1−4]
应用:将矩阵化为对角矩阵,起解耦作用。
由于AAA有两个线性无关的特征向量,故可以对角化。
令P=[v1 v2]P=[v_1\ v_2]P=[v1 v2],PPP称为过渡矩阵,
则:
AP=A[v1 v2]=A[v11v21v12v22]=[A[v11v12] A[v21v22]]=[λ1[v11v12] λ2[v21v22]]=[λ1v11λ2v21λ1v12λ2v22]=[v11v21v12v22][λ100λ2]=PΛ
\begin{align}
AP&=
A[v_1\ v_2]\\&=
A
\begin{bmatrix}
v_{11} & v_{21}\\
v_{12} & v_{22}
\end{bmatrix}\\&=
\begin{bmatrix}
A
\begin{bmatrix}
v_{11}\\
v_{12}
\end{bmatrix}\
A
\begin{bmatrix}
v_{21}\\
v_{22}
\end{bmatrix}
\end{bmatrix}\\&=
\begin{bmatrix}
\lambda_1
\begin{bmatrix}
v_{11}\\
v_{12}
\end{bmatrix}\
\lambda_2
\begin{bmatrix}
v_{21}\\
v_{22}
\end{bmatrix}
\end{bmatrix}\\&=
\begin{bmatrix}
\lambda_1 v_{11} & \lambda_2 v_{21}\\
\lambda_1 v_{12} & \lambda_2 v_{22}
\end{bmatrix}\\&=
\begin{bmatrix}
v_{11} & v_{21}\\
v_{12} & v_{22}
\end{bmatrix}
\begin{bmatrix}
\lambda_1 & 0\\
0 & \lambda_2
\end{bmatrix}\\&=
P\Lambda
\end{align}
AP=A[v1 v2]=A[v11v12v21v22]=[A[v11v12] A[v21v22]]=[λ1[v11v12] λ2[v21v22]]=[λ1v11λ1v12λ2v21λ2v22]=[v11v12v21v22][λ100λ2]=PΛ
得:
P−1AP=Λ
P^{-1}AP=\Lambda
P−1AP=Λ
其中Λ\LambdaΛ称为对角矩阵
考虑微分方程组:
dx1dt=x1+x2dx2dt=4x1−2x2⇒ddt[x1x2]=[114−2][x1x2]⇒x˙=Ax
\begin{align}
&\begin{matrix}
\frac{dx_1}{dt} &=& x_1 + x_2\\
\frac{dx_2}{dt} &=& 4x_1 - 2x_2
\end{matrix}\\
\Rightarrow&
\frac{d}{dt}
\begin{bmatrix}
x_1\\
x_2
\end{bmatrix}=
\begin{bmatrix}
1 & 1\\
4 & -2
\end{bmatrix}
\begin{bmatrix}
x_1\\
x_2
\end{bmatrix}
\\ \Rightarrow&
\dot x=Ax
\end{align}
⇒⇒dtdx1dtdx2==x1+x24x1−2x2dtd[x1x2]=[141−2][x1x2]x˙=Ax
令: x=Py (基变换)x˙=Py˙Ax=APyPy˙=APyy˙=P−1APyy˙=Λyy˙=[200−3]y⇒y˙1=2y1y˙2=−3y2⇒y1=C1e2ty2=C2e−3t则:x=Py=[111−4][C1e2tC2e−3t]=[C1e2t+C2e−3tC1e2t−4C2e−3t] \begin{align} 令:\ x &= Py\ (基变换)\\ \dot x &= P\dot y\\ Ax &= APy\\ P\dot y &= APy\\ \dot y &= P^{-1}APy\\ \dot y &= \Lambda y\\ \dot y &= \begin{bmatrix} 2 & 0\\ 0 & -3 \end{bmatrix} y\\ &\Rightarrow \begin{matrix} &\dot y_1 &=& 2 y_1\\ &\dot y_2 &=& -3y_2 \end{matrix}\\ &\Rightarrow \begin{matrix} &y_1 &=& C_1e^{2t}\\ &y_2 &=& C_2e^{-3t} \end{matrix}\\ 则:x&=Py\\&= \begin{bmatrix} 1 & 1\\ 1 & -4 \end{bmatrix} \begin{bmatrix} C_1e^{2t}\\ C_2e^{-3t} \end{bmatrix}\\&= \begin{bmatrix} C_1e^{2t} &+& C_2e^{-3t}\\ C_1e^{2t} &-& 4C_2e^{-3t} \end{bmatrix} \end{align} 令: xx˙AxPy˙y˙y˙y˙则:x=Py (基变换)=Py˙=APy=APy=P−1APy=Λy=[200−3]y⇒y˙1y˙2==2y1−3y2⇒y1y2==C1e2tC2e−3t=Py=[111−4][C1e2tC2e−3t]=[C1e2tC1e2t+−C2e−3t4C2e−3t]
注:令x=Pyx=Pyx=Py作为基变换,相当于以v1, v2v_1,\ v_2v1, v2作为新的坐标轴方向,将x1, x2x_1,\ x_2x1, x2之间的关系简化解耦了。
总结:
-
特征值与特征向量的定义,Av=λvAv = \lambda vAv=λv 在一条直线上
-
如何求解 λ\lambdaλ 与 vvv
-
P−1AP=ΛP^{-1}AP = \LambdaP−1AP=Λ,过渡矩阵P=[v1 v2 ......], ΛP=[v_1\ v_2\ ......],\ \LambdaP=[v1 v2 ......], Λ为对角矩阵,元素为依次排列的特征值λ\lambdaλ
-
应用:解微分方程组。
x˙=Ax⇒x=Py⇒y˙=Λy \begin{align} \dot x = Ax\\ \Rightarrow x = Py \\ \Rightarrow \dot y = \Lambda y \end{align} x˙=Ax⇒x=Py⇒y˙=Λy
最后反解出xxx。
很多时候无需解出方程,可通过判断特征值符号与性质来判断系统稳定性与表现。
对于微分方程组 x˙=Ax\dot x=Axx˙=Ax,系统的“不动点”是原点 x=0\mathbf{x}=0x=0。
如果所有特征值的实部都小于零,那么任何初始状态最终都会衰减到原点,系统是稳定的。
如果至少有一个特征值的实部大于零,那么存在一些初始状态会导致解趋向于无穷大,系统是不稳定的。
如果特征值有虚部,代表系统存在振荡行为。
1206

被折叠的 条评论
为什么被折叠?



