机器学习基础(5):决策树和随机森林

1. 决策树

前言:决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法。

在这里插入图片描述
但是如何选择特征的优先级呢?可以使用二分法举例子:
假设有32支球队角逐世界杯冠军,在不知道各队信息的情况下要猜多少次才知道冠军呢?
在这里插入图片描述

很容易得知:如果不知道任何一个球队的信息,要猜对至少要5次,5bit。

在这里插入图片描述

“谁是世界杯冠军”的信息量应该比5比特少。香农指出,它的准确信息量应该是:

H = -(p1logp1 + p2logp2 + … + p32log32)

H的专业术语称之为信息熵,单位为比特。
公式:

在这里插入图片描述
如果开放一些历史信息:
在这里插入图片描述
结果便会小于5。

信息增益

信息增益是决策树的划分依据之一,增益越大,不准性减少越多。

特征A对训练数据集D的信息增益g(D,A),定义为集合D的信息熵H(D)与特征A给定条件下D的信息条件熵H(D|A)之差,即公式为:
在这里插入图片描述
银行贷款数据
在这里插入图片描述
信息熵的计算:
在这里插入图片描述
条件熵的计算:
在这里插入图片描述
注:𝐶_𝑘 表示属于某个类别的样本数
在这里插入图片描述

常见决策树使用的算法

ID3:信息增益 最大的准则
C4.5:信息增益比 最大的准则
CART :回归树: 平方误差 最小;分类树: 基尼系数 最小的准则 在sklearn中可以选择划分的原则

但原则都是基于信息增益的。

决策树优缺点

优点:
简单的理解和解释,树木可视化。
需要很少的数据准备,其他技术通常需要数据归一化,

缺点:
决策树学习者可以创建不能很好地推广数据的过于复杂的树,易于过拟合。
决策树可能不稳定,因为数据的小变化可能会导致完全不同的树被生成。

2. 随机森林

随机森林是集成学习的一种:集成学习通过建立几个模型组合的来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成单预测,因此优于任何一个单分类的做出预测。

随机森林定义:在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。

学习算法

根据下列算法而建造每棵树:

用N来表示训练用例(样本)的个数,M表示特征数目。
输入特征数目m,用于确定决策树上一个节点的决策结果;其中m应远小于M。

从N个训练用例(样本)中以有放回抽样的方式,取样N次,形成一个训练集(即bootstrap取样),并用未抽到的用例(样本)作预测,评估其误差。

1.为什么要随机抽样训练集?  
如果不进行随机抽样,每棵树的训练集都一样,那么最终训练出的树分类结果也是完全一样的

2.为什么要有放回地抽样?
如果不是有放回的抽样,那么每棵树的训练样本都是不同的,都是没有交集的,这样每棵树都是“有偏的”,都是绝对“片面的”(当然这样说可能不对),也就是说每棵树训练出来都是有很大的差异的;而随机森林最后分类取决于多棵树(弱分类器)的投票表决。

优点

在当前所有算法中,具有极好的准确率
能够有效地运行在大数据集上
能够处理具有高维特征的输入样本,而且不需要降维
能够评估各个特征在分类问题上的重要性
对于缺省值问题也能够获得很好得结果

3. 泰坦尼克乘客分类模型举例

步骤

在这里插入图片描述

泰坦尼克号数据介绍

在泰坦尼克号和titanic2数据帧描述泰坦尼克号上的个别乘客的生存状态。在泰坦尼克号的数据帧不包含从剧组信息,但它确实包含了乘客的一半的实际年龄。关于泰坦尼克号旅客的数据的主要来源是百科全书Titanica。这里使用的数据集是由各种研究人员开始的。其中包括许多研究人员创建的旅客名单,由Michael A. Findlay编辑。

我们提取的数据集中的特征是票的类别,存活,乘坐班,年龄,登陆,home.dest,房间,票,船和性别。乘坐班是指乘客班(1,2,3),是社会经济阶层的代表。其中age数据存在缺失。
在这里插入图片描述

参考代码

from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.feature_extraction import DictVectorizer
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn.ensemble import RandomForestClassifier
import pandas as pd


def decision():
    """
    决策树对泰坦尼克号进行预测生死
    :return: None
    """
    # 获取数据
    titan = pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")

    # 处理数据,找出特征值和目标值
    x = titan[['pclass', 'age', 'sex']]

    y = titan['survived']

    print(x)
    # 缺失值处理
    x['age'].fillna(x['age'].mean(), inplace=True)

    # 分割数据集到训练集合测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)

    # 进行处理(特征工程)特征-》类别-》one_hot编码
    dict = DictVectorizer(sparse=False)

    x_train = dict.fit_transform(x_train.to_dict(orient="records"))

    print(dict.get_feature_names())

    x_test = dict.transform(x_test.to_dict(orient="records"))

    # print(x_train)
    # 用决策树进行预测
    # dec = DecisionTreeClassifier()
    #
    # dec.fit(x_train, y_train)
    #
    # # 预测准确率
    # print("预测的准确率:", dec.score(x_test, y_test))
    #
    # # 导出决策树的结构
    # export_graphviz(dec, out_file="./tree.dot", feature_names=['年龄', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', '女性', '男性'])

    # 随机森林进行预测 (超参数调优)
    rf = RandomForestClassifier()

    param = {"n_estimators": [120, 200, 300, 500, 800, 1200], "max_depth": [5, 8, 15, 25, 30]}

    # 网格搜索与交叉验证
    gc = GridSearchCV(rf, param_grid=param, cv=2)

    gc.fit(x_train, y_train)

    print("准确率:", gc.score(x_test, y_test))

    print("查看选择的参数模型:", gc.best_params_)

    return None


if __name__ == "__main__":
    decision()



  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值