数据处理-利用 python进行异常值分析

异常值分析是检验数据是否有录入错误数据和不合常理的数据。不加剔除的把异常值代入数据分析过程中,会对结果产生不良影响,而对异常值的分析其原因,常常成为为发现问题的而改进决策的契机。

异常值是指样本中的个别值,其数值明显偏离其余的数据。异常值通常也称为离群点,所以异常值分析也叫做离群点分析。

异常值分析通常有以下几种:

(1)简单统计量分析

最常用的统计量是最大值和最小值,用来判断这个变量的取值是否超出了合理的范围。

(2)3σ原则

如果数据服从正态分布,在3σ原则下,异常值被定义为一组测定值中与平均值的偏差超过3倍标准差的值。在正态分布的假设下,距离平均值3σ之外的值出现的概率为,属于极个别的小概率事件

(3)箱型图分析

箱型图提供了识别异常值的一个标准:异常值通常被定义为小于或大于的值。Q1 -1.5IQR称为下四分位数,表示全部观察值中有四分之一的数据取值比它下;Q2 -1.5IQR称为上四分位数,表示全部观察值中有四分之一的数据取值比它大;IQR称为四分位数间距,是上四分位数和下四分位数之差,期间包含了全部观察值的一般。

如果数据记录和属性比较多,使用人工分辨的方法就不切实际,所以这里需要编写程序来检测出含有缺失值的记录和属性以及缺失率个数和缺失率等

以下就是箱型图利用 python进行生成分析一下:

#-- coding: utf-8 --

import pandas as pd

catering_sale = ‘path’ #餐饮数据

data = pd.read_excel(catering_sale, index_col &

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值