强烈推荐代码生成器Cursor

本文介绍了使用OpenCV进行图像相似度比较的算法,包括直方图比较和模板匹配。同时,展示了C++中实现读写锁的模板类,并提供了不确定数量参数的处理示例。此外,还探讨了ArcFace损失函数的实现和HSL、HSV颜色空间的区别,以及C++中的重写、重载和复写概念。还提到了提升pip下载速度的方法,建议使用清华源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. Cursor 官网

  2. 登录可用,免费版一个月可以提问 100 次。

    对话形式,支持所有语言
  3. 直接问一个任务,能给出任务Demo

    如实现图像相似度算法
// 导入OpenCV库
#include <opencv2/opencv.hpp>

using namespace cv;

int main()
{
    // 读取两张图片
    Mat img1 = imread("image1.jpg");
    Mat img2 = imread("image2.jpg");

    // 将图片转换为灰度图
    cvtColor(img1, img1, COLOR_BGR2GRAY);
    cvtColor(img2, img2, COLOR_BGR2GRAY);

    // 计算直方图
    Mat hist1, hist2;
    calcHist(&img1, 1, 0, Mat(), hist1, 1, {256}, {0, 256});
    calcHist(&img2, 1, 0, Mat(), hist2, 1, {256}, {0, 256});

    // 计算相似度
    double similarity = compareHist(hist1, hist2, HISTCMP_CORREL);

    // 输出相似度
    std::cout << "相似度为:" << similarity << std::endl;

    return 0;

更多图像匹配算法

matchTemplate(Img1, Img2, result, cv::TM_CCOEFF_NORMED, ROI);
  1. 能复现所有已知功能及算法
    如实现所有基本类型的互斥锁
template<typename T>
class ReadWriteLock {
public:
    // 读操作
    T read() {
        std::shared_lock<std::shared_mutex> lock(mutex_);
        return (value_);
    }

    // 写操作
    void write(T value) {
        std::unique_lock<std::shared_mutex> lock(mutex_);
        value_ = value;
    }

private:
    T value_;
    std::shared_mutex mutex_;
};

写一个不确定个数传参Demo

void fun(const double noSim, ...)
{
	va_list args;
	va_start(args, noSim);
	const double Z = va_arg(args, const double);
	const cv::Mat rb = va_arg(args, const cv::Mat);
	const SimilarityBase::Ptr spSim = va_arg(args, const SimilarityBase::Ptr);
	va_end(args);
	}

比如实现ArcFace损失函数

import math
import tensorflow as tf
from unittest.mock import MagicMock

def arcface_loss(embeddings, labels, out_num, s=64.0, m=0.5):
    cos_m = math.cos(m)
    sin_m = math.sin(m)
    mm = sin_m * m  # issue 1
    threshold = math.cos(math.pi - m)
    cos_t = tf.matmul(embeddings, tf.transpose(embeddings))
    batch_size = tf.shape(embeddings)[0]
    labels = tf.reshape(labels, [batch_size, 1])
    labels = tf.cast(labels, dtype=tf.int32)
    indices = tf.reshape(tf.range(0, batch_size), [batch_size, 1])
    indices = tf.cast(indices, dtype=tf.int32)
    concated = tf.concat([indices, labels], axis=1)
    one_hot = tf.sparse_to_dense(concated, [batch_size, out_num], 1.0, 0.0)
    one_hot = tf.cast(one_hot, dtype=tf.float32)
    cosine = cos_t * one_hot
    sine = tf.sqrt(1.0 - tf.square(cosine))
    phi = cos_t * cos_m - sine * sin_m  # issue 2
    phi = tf.where(cos_t > threshold, phi, cos_t - sin_m * mm)
    output = (phi * one_hot + (cosine - phi * one_hot) * s)  # issue 3
    return output

def test_arcface_loss():
    embeddings = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]])
    labels = tf.constant([0, 1, 2])
    out_num = 3
    s = 64.0
    m = 0.5
    expected_output = tf.constant([[64.0, -32.0, -32.0], [-32.0, 64.0, -32.0], [-32.0, -32.0, 64.0]])
    assert tf.reduce_all(tf.equal(arcface_loss(embeddings, labels, out_num, s, m), expected_output))
  1. 能回答已知的的科学问题

    提升pip下载速度,Cursor会建议用tsinghua源
pip install opencv-contrib-python==4.5.5.64
 --index-url https://pypi.tuna.tsinghua.edu.cn/simple

如HSL、HSV 中 S L V的区别

  • HSL颜色空间中的L分量表示颜色的亮度,是从黑色到白色的连续变化

  • HSV颜色空间中的V分量表示颜色的明度,是从黑色到最鲜艳的颜色的连续变化

  • HSV颜色空间中的S分量表示颜色的纯度,是颜色中白色成分的比例

  • HSL颜色空间中的S分量表示颜色的饱和度,是颜色中灰色成分的比例

    实现 L分量代码

double calculateL(double r, double g, double b) {
    double maxVal = std::max({r, g, b});
    double minVal = std::min({r, g, b});
    double l = (maxVal + minVal) / 2.0;
    return l;
}

C++重写(override)、复写(overwrite)、重载(overload)区别
重写(override)是指派生类中重新定义基类中已有的虚函数,使得派生类对象调用该虚函数时,调用的是派生类中的函数。重写的函数必须与基类中的虚函数有相同的函数名、参数列表和返回类型。在派生类中,可以使用override关键字显式地声明一个函数是重写基类中的虚函数。

复写(overwrite)是指在派生类中定义一个与基类中同名的非虚函数,从而覆盖了基类中的同名函数。复写的函数必须与基类中的函数有相同的函数名和参数列表,但可以有不同的返回类型。复写不需要使用关键字。

重载(overload)是指在同一个作用域中定义多个同名函数,但它们的参数列表不同。重载的函数必须与其他同名函数有不同的参数列表,可以有不同的返回类型。重载不需要使用关键字。

  1. 代码有Bug直接问它,可以协助找到Bug。

  2. 对代码功能不理解,直接问它。

  3. Latex代码问题也可

在这里插入图片描述

<think>嗯,用户需要针对Web测试工程师职位的面试题目和答案,涉及接口测试、功能测试、性能测试等方面,还有工具和技术的使用。首先,我得理清楚各个技能点,然后分门别类生成问题。 用户提到的工具有Postman和其他接口测试工具,Linux系统包括CentOS、Ubuntu、openEuler,脚本语言Shell和Python,数据库MySQL和Oracle,容器技术Docker和Kubernetes。还有接口测试、功能测试、性能测试这些测试类型。 先从接口测试开始。可能的问题包括Postman的基本使用,比如如何发送请求、设置环境变量,还有断言的作用。另外,高级功能如自动化测试和Mock服务也可能被问到。需要确保覆盖基本和进阶内容。 然后是Linux操作系统,常见的问题可能包括基本命令,比如查看进程、日志分析,权限管理,Shell脚本编写。用户提到的不同发行版,可能需要比较CentOS和Ubuntu的区别,或者openEuler的特点。 Shell和Python脚本语言方面,可能会问如何编写自动化部署脚本,或者处理日志文件。Python的单元测试框架如pytest,以及数据库连接库的使用也是重点。 数据库部分,SQL查询、索引优化、事务隔离级别这些是常见的面试题。Oracle和MySQL的区别,比如存储引擎、事务处理等方面的问题也需要准备。 容器技术Docker和Kubernetes,问题可能涉及基本命令、镜像构建、K8s的核心概念如Pod和Deployment,以及如何部署应用到集群。 功能测试方面,测试用例设计方法,比如等价类划分和边界值分析,还有Bug的生命周期和管理流程。 性能测试需要涵盖工具如JMeter的使用,性能指标,如何定位瓶颈,以及压力测试与负载测试的区别。可能还要提到监控工具和中间件的调优。 每个部分的问题需要覆盖基础知识和实际应用,答案要详细但不过于冗长,确保用户能理解关键点。同时,引用相关的资料,比如引用[2]提到性能分析工具和中间件监控,引用[4]关于禅道的使用,虽然禅道可能不直接相关,但测试流程管理可以间接关联。 还要注意用户希望问题全面,所以每个技术点至少生成两到三个问题,并确保答案准确。可能需要检查是否有遗漏的技术点,比如Docker网络配置或K8s的自动扩缩容机制。 最后,确保问题结构清晰,分类明确,方便用户准备。可能还需要提醒用户结合实践,因为工具的实际操作经验很重要,而不仅仅是理论。</think>### Web测试工程师面试题及解答 #### **一、接口测试(Postman及其他工具)** 1. **如何用Postman实现带Token认证的接口测试?** - 在Postman的`Headers`中添加`Authorization: Bearer <token>`[^1] - 使用环境变量管理Token,通过脚本(Tests标签)自动提取Token并赋值到全局变量。 - 示例代码: ```javascript pm.test("Extract token", function () { var jsonData = pm.response.json(); pm.environment.set("token", jsonData.token); }); ``` 2. **Postman中如何实现断言验证接口响应?** - 在`Tests`标签中使用JavaScript编写断言,例如: ```javascript pm.test("Status code is 200", () => pm.response.to.have.status(200)); pm.test("Response contains expected field", () => pm.expect(pm.response.json().data).to.exist); ``` 3. **如何用Postman实现接口自动化测试?** - 使用`Collection Runner`批量运行请求,结合数据文件(CSV/JSON)参数化测试。 - 通过`Newman`命令行工具集成到CI/CD流程[^2]。 --- #### **二、Linux操作系统(CentOS/Ubuntu/openEuler)** 1. **如何查看Linux系统中某个进程的CPU和内存占用?** - 使用`top`或`htop`实时监控进程资源。 - 通过`ps aux | grep <进程名>`过滤特定进程[^2]。 2. **如何分析日志文件中的错误信息?** - 使用`grep "error" /var/log/syslog`过滤关键字。 - 结合`tail -f`实时跟踪日志更新。 3. **如何通过Shell脚本批量替换文件中的字符串?** ```bash #!/bin/bash sed -i 's/old_string/new_string/g' /path/to/files/*.txt ``` --- #### **三、Shell/Python脚本开发** 1. **编写Shell脚本实现日志文件按日期归档** ```bash #!/bin/bash log_dir="/var/log/app" archive_dir="$log_dir/archive" mkdir -p $archive_dir find $log_dir -name "*.log" -mtime +7 -exec mv {} $archive_dir \; ``` 2. **用Python实现数据库查询结果导出为CSV** ```python import csv import pymysql conn = pymysql.connect(host='localhost', user='root', password='', db='test') cursor = conn.cursor() cursor.execute("SELECT * FROM users") with open('output.csv', 'w') as f: writer = csv.writer(f) writer.writerow([i[0] for i in cursor.description]) # 写入表头 writer.writerows(cursor.fetchall()) ``` --- #### **四、MySQL/Oracle数据库** 1. **如何优化慢查询?** - 使用`EXPLAIN`分析执行计划,添加索引(如`CREATE INDEX idx_name ON table(column)`)。 - 避免全表扫描,优化SQL语句结构。 2. **MySQL事务隔离级别有哪些?** - 读未提交(READ UNCOMMITTED) - 读已提交(READ COMMITTED) - 可重复读(REPEATABLE READ) - 串行化(SERIALIZABLE) --- #### **五、Docker/Kubernetes容器技术** 1. **如何通过Dockerfile构建镜像?** ```dockerfile FROM ubuntu:20.04 RUN apt-get update && apt-get install -y python3 COPY app.py /app/ CMD ["python3", "/app/app.py"] ``` - 执行命令:`docker build -t myapp:latest .` 2. **Kubernetes中Pod和Deployment的区别?** - Pod是最小调度单元,Deployment用于管理Pod副本和滚动更新。 - 示例创建Deployment: ```yaml apiVersion: apps/v1 kind: Deployment metadata: name: nginx-deployment spec: replicas: 3 template: spec: containers: - name: nginx image: nginx:1.14.2 ``` --- #### **六、功能测试与性能测试** 1. **如何设计覆盖率高且无冗余的测试用例?** - 使用等价类划分和边界值分析法。 - 示例:输入字段范围为1-100,需测试0、1、50、100、101等值。 2. **JMeter中如何模拟高并发场景?** - 配置线程组:设置线程数(用户数)和循环次数。 - 添加`HTTP Request`采样器,使用`CSV Data Set Config`参数化请求数据。 --- ### §§扩展问题§§ 1. **如何验证接口的幂等性?** 2. **Linux系统中如何排查内存泄漏?** 3. **Python如何实现多线程异步HTTP请求测试?** 4. **Kubernetes中如何实现蓝绿部署?**
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值