- 很多时候,我们不能简单地使用
cv2.resize()
来直接对图像的分辨率进行调节,为什么呢?
假设原始的分辨率是220*1000
,也就是属于矮胖型
,那么如果直接resize到1000*1200
会怎样呢,肯定就是直接在高度
维度上拉伸,可想而知图片肯定是很诡异的
那如何让resize后的图像看起来更加美好呢?这就要使用resize+padding了 - 第一步,resize:在保持原有宽高比(i.e. aspect ratio)的前提下,选择高、宽目标放缩比例最大的作为基准(看上面的例子可知:高的放缩比例是220/1000,宽的放缩比例是1000/1200,所以基准是宽,比例为1200/1000),然后按照这个相同的基准缩放高和宽,这样就能让缩放后的高不至于太过于夸张了
- 第二步,padding:第一步只是在保证宽高比的基础上做的最大程度的放大,但这还没有达到目标的分辨率,这时就要用padding来补齐分辨率,通俗的说就是在resize后图像的两侧(可能是高,也可能是宽)加上黑色的padding区域,这样就完成了不失真的resize了
- 补充一个
np.concatenate
,这个是拼图用的,主要注意的点:第一个参数需要用()
括起来哦,第二参数是按照某个维度进行级联
opencv+resize+padding+concate
最新推荐文章于 2024-09-07 21:39:11 发布