opencv+resize+padding+concate

  • 很多时候,我们不能简单地使用cv2.resize()来直接对图像的分辨率进行调节,为什么呢?
    假设原始的分辨率是220*1000,也就是属于矮胖型,那么如果直接resize到1000*1200会怎样呢,肯定就是直接在高度维度上拉伸,可想而知图片肯定是很诡异的
    那如何让resize后的图像看起来更加美好呢?这就要使用resize+padding了
  • 第一步,resize:在保持原有宽高比(i.e. aspect ratio)的前提下,选择高、宽目标放缩比例最大的作为基准(看上面的例子可知:高的放缩比例是220/1000,宽的放缩比例是1000/1200,所以基准是宽,比例为1200/1000),然后按照这个相同的基准缩放高和宽,这样就能让缩放后的高不至于太过于夸张了
  • 第二步,padding:第一步只是在保证宽高比的基础上做的最大程度的放大,但这还没有达到目标的分辨率,这时就要用padding来补齐分辨率,通俗的说就是在resize后图像的两侧(可能是高,也可能是宽)加上黑色的padding区域,这样就完成了不失真的resize了
  • 补充一个np.concatenate,这个是拼图用的,主要注意的点:第一个参数需要用()括起来哦,第二参数是按照某个维度进行级联
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值