对象映射优化代码

代码使用对象映射前后对比

原代码:

          if (element.step === 'users') {
            this.UpdateDetailList[index].step = '用户数据更新';
          } else if (element.step === 'departments') {
            this.UpdateDetailList[index].step = '组织数据更新';
          } else if (element.step === 'users_relationship') {
            this.UpdateDetailList[index].step = '用户间关系数据更新';
          } else if (element.step === 'dept_user_relationship') {
            this.UpdateDetailList[index].step = '用户和组织关系数据更新';
          }

使用对象映射后

      stepList: [
        { name: '' },
        { name: '' },
        { name: '' },
        { name: '' },
      ],
          const Map = {
            users: '用户数据更新',
            departments: '组织数据更新',
            users_relationship: '用户间关系数据更新',
            dept_user_relationship: '用户和组织关系数据更新',
          };
          this.stepList[index].name = Map[element.step];

### 关于铝材料中Cohesive Element的Traction Separation Laws 在有限元分析中,对于铝材料中的粘聚力单元(cohesive element),traction separation laws 描述了界面处应力与位移之间的关系。这些定律用于模拟裂纹扩展、分层和其他类型的损伤行为。 #### 定义和基本原理 牵引分离律定义了当两个接触面之间发生相对运动时所施加的法向和切向牵引力如何随着它们之间的开口变化而改变。对于铝合金而言,这种关系通常是非线性的,并且取决于材料的具体属性以及加载条件[^1]。 #### 常见模型形式 几种常见的 traction-separation law 形式被广泛应用于描述金属材料的行为: - **双线性模型 (Bilinear Model)** 这是最简单的形式之一,在初始阶段提供恒定刚度直到达到峰值载荷;之后进入软化区段,表现出逐渐减小的有效强度。 - **指数型衰减函数 (Exponential Decay Function)** 此方法通过引入一个负指数项来表示从最大值到零点平滑过渡的过程,适用于捕捉快速下降特征的情况。 - **幂次方程 (Power Law Relation)** 使用幂级数表达式的优点是可以灵活调整曲线形状以匹配实验数据特性,尤其适合处理复杂多变的实际工况下的响应模式[^2]. ```matlab % MATLAB code snippet demonstrating a simple bilinear model implementation function [sigma, delta] = calculate_traction_separation_law(Dmax, sigma_max, Gc) % Dmax: maximum displacement at which full debonding occurs % sigma_max: peak stress value before softening begins % Gc: critical energy release rate if nargin < 3 || isempty(Gc), error('Critical Energy Release Rate must be specified'); end; % Define the relationship between traction and separation distance delta = linspace(0,Dmax*2); % Displacement vector up to twice max possible opening sigma = zeros(size(delta)); for i=1:length(delta) d = delta(i); if d<=Dmax, sigma(i)=min(sigma_max,d*(Gc/(Dmax^2))); else sigma(i)=(d-Dmax)*(Gc/Dmax)+sigma_max-(Gc*Dmax)/(delta(end)-Dmax); end end end ``` 上述代码片段展示了实现简单双线性牵引分离规律的方法,其中 `calculate_traction_separation_law` 函数接收三个参数:完全脱胶的最大位移 (`Dmax`)、峰应力(`sigma_max`) 和临界能量释放率 (`Gc`). 输出则是对应不同开缝宽度下计算得到的理论牵引力分布情况.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值