整理资料- 关于两点是否穿插指定矩形解析c#


        /// <summary>
        ///  判断线段的方向  1 由上到下  2  由下到上,  3 由左到右,   4由右到左\
        /// </summary>
        /// <param name="points"> 起始点</param>
        /// <returns></returns>
        public int GetOrientation(List<Point> points)
        {
            /// 判断线段的方向。 1 由上到下  2  由下到上,  3 由左到右,   4由右到左\
            int type = -1;

            Point lineSPoint = points[0];  // 第一段线 线段  开始点   
            Point lineEPoint = points[1];  //   第一段线 线段结束
            if ((lineSPoint.X - lineEPoint.X) > 0)
            {
                type = 4;
            }
            else if ((lineSPoint.X - lineEPoint.X) < 0)
            {
                type = 3;
            }
            else
            {
                if ((lineSPoint.Y - lineEPoint.Y) > 0)
                {
                    //如果开始点的 y方向
                    type = 2;
                }
                else if ((lineSPoint.Y - lineEPoint.Y) < 0)
                {
                    type = 1;
                }
            }

            return type;
        }

        /// <summary>
        /// 线段与矩形是否相交
        /// </summary>
        /// <param name="startLineX">直线坐标起点X</param>
        /// <param name="startLineY">直线坐标起点Y</param>
        /// <param name="endLineX">直线坐标终点X</param>
        /// <param name="endLineY">直线坐标终点Y</param>
        /// <param name="rectangleLeftTopX">矩形 x</param>
        /// <param name="rectangleLeftTopY">矩形 Y</param>
        /// <param name="rectangleRightBottomX">X长度</param>
        /// <param name="rectangleRightBottomY"> Y长度</param>
        /// <param name="sDoc"> 开始点是否在矩形内部</param>
        /// <param name="eDoc">结束点 是否在矩形内部</param>
        /// <returns></returns>
        public static bool isLineIntersectRectangle(float startLineX, float startLineY, float endLineX, float endLineY, float rectangleLeftTopX, float rectangleLeftTopY, float rectangleRightBottomX, float rectangleRightBottomY, out bool sDoc, out bool eDoc)
        {
            sDoc = isDocIntersectRectangle(startLineX, startLineY, rectangleLeftTopX, rectangleLeftTopY, rectangleRightBottomX, rectangleRightBottomY);
            eDoc = isDocIntersectRectangle(endLineX, endLineY, rectangleLeftTopX, rectangleLeftTopY, rectangleRightBottomX, rectangleRightBottomY);
            float lineHeight = startLineY - endLineY;
            float lineWidth = endLineX - startLineX;  // 计算叉乘 
            float c = startLineX * endLineY - endLineX * startLineY;
            if ((lineHeight * rectangleLeftTopX + lineWidth * rectangleLeftTopY + c >= 0 && lineHeight * rectangleRightBottomX + lineWidth * rectangleRightBottomY + c <= 0)
                || (lineHeight * rectangleLeftTopX + lineWidth * rectangleLeftTopY + c <= 0 && lineHeight * rectangleRightBottomX + lineWidth * rectangleRightBottomY + c >= 0)
                || (lineHeight * rectangleLeftTopX + lineWidth * rectangleRightBottomY + c >= 0 && lineHeight * rectangleRightBottomX + lineWidth * rectangleLeftTopY + c <= 0)
                || (lineHeight * rectangleLeftTopX + lineWidth * rectangleRightBottomY + c <= 0 && lineHeight * rectangleRightBottomX + lineWidth * rectangleLeftTopY + c >= 0))
            {

                if (rectangleLeftTopX > rectangleRightBottomX)
                {
                    float temp = rectangleLeftTopX;
                    rectangleLeftTopX = rectangleRightBottomX;
                    rectangleRightBottomX = temp;
                }
                if (rectangleLeftTopY < rectangleRightBottomY)
                {
                    float temp1 = rectangleLeftTopY;
                    rectangleLeftTopY = rectangleRightBottomY;
                    rectangleRightBottomY = temp1;
                }
                if ((startLineX < rectangleLeftTopX && endLineX < rectangleLeftTopX)
                    || (startLineX > rectangleRightBottomX && endLineX > rectangleRightBottomX)
                    || (startLineY > rectangleLeftTopY && endLineY > rectangleLeftTopY)
                    || (startLineY < rectangleRightBottomY && endLineY < rectangleRightBottomY))
                {
                    return false;
                }
                else
                {
                    return true;
                }
            }
            else
            {
                return false;
            }

        }


        /// <summary>
        ///  判断  点位是否在矩形内部
        /// </summary>
        /// <param name="startLineX">开始坐标X </param>
        /// <param name="startLineY">结束坐标X</param>
        /// <param name="rectangleLeftTopX">矩形 x</param>
        /// <param name="rectangleLeftTopY">矩形 Y</param>
        /// <param name="rectangleRightBottomX">X长度</param>
        /// <param name="rectangleRightBottomY"> Y长度</param>
        /// <returns></returns>
        public static bool isDocIntersectRectangle(float startLineX, float startLineY, float rectangleLeftTopX, float rectangleLeftTopY, float rectangleRightBottomX, float rectangleRightBottomY)
        {
            bool result = false;

            if (startLineX <= rectangleRightBottomX && startLineX >= rectangleLeftTopX && startLineY >= rectangleLeftTopY && startLineY <= rectangleRightBottomY)
            {
                result = true;
            }
            return result;


        }


        /// <summary>
        /// 计算两条直线的交点  弃用 计算不是很精准
        /// </summary>
        /// <param name="lineFirstStar">L1的点1坐标</param>
        /// <param name="lineFirstEnd">L1的点2坐标</param>
        /// <param name="lineSecondStar">L2的点1坐标</param>
        /// <param name="lineSecondEnd">L2的点2坐标</param>
        /// <returns></returns>
        public static PointF GetIntersection(PointF lineFirstStar, PointF lineFirstEnd, PointF lineSecondStar, PointF lineSecondEnd)
        {
            /*
             * L1,L2都存在斜率的情况:
             * 直线方程L1: ( y - y1 ) / ( y2 - y1 ) = ( x - x1 ) / ( x2 - x1 ) 
             * => y = [ ( y2 - y1 ) / ( x2 - x1 ) ]( x - x1 ) + y1
             * 令 a = ( y2 - y1 ) / ( x2 - x1 )
             * 有 y = a * x - a * x1 + y1   .........1
             * 直线方程L2: ( y - y3 ) / ( y4 - y3 ) = ( x - x3 ) / ( x4 - x3 )
             * 令 b = ( y4 - y3 ) / ( x4 - x3 )
             * 有 y = b * x - b * x3 + y3 ..........2
             * 
             * 如果 a = b,则两直线平等,否则, 联解方程 1,2,得:
             * x = ( a * x1 - b * x3 - y1 + y3 ) / ( a - b )
             * y = a * x - a * x1 + y1
             * 
             * L1存在斜率, L2平行Y轴的情况:
             * x = x3
             * y = a * x3 - a * x1 + y1
             * 
             * L1 平行Y轴,L2存在斜率的情况:
             * x = x1
             * y = b * x - b * x3 + y3
             * 
             * L1与L2都平行Y轴的情况:
             * 如果 x1 = x3,那么L1与L2重合,否则平等
             * 
            */
            float a = 0, b = 0;
            int state = 0;
            if (lineFirstStar.X != lineFirstEnd.X)
            {
                a = (lineFirstEnd.Y - lineFirstStar.Y) / (lineFirstEnd.X - lineFirstStar.X);
                state |= 1;
            }
            if (lineSecondStar.X != lineSecondEnd.X)
            {
                b = (lineSecondEnd.Y - lineSecondStar.Y) / (lineSecondEnd.X - lineSecondStar.X);
                state |= 2;
            }
            switch (state)
            {
                case 0: //00
                    {
                        if (lineFirstStar.X == lineSecondStar.X)
                        {
                            //throw new Exception("两条直线互相重合,且平行于Y轴,无法计算交点。");
                            return new PointF(0, 0);
                        }
                        else
                        {
                            //throw new Exception("两条直线互相平行,且平行于Y轴,无法计算交点。");
                            return new PointF(0, 0);
                        }
                    }
                case 1: //L1存在斜率, L2平行Y轴
                    {
                        float x = lineSecondStar.X;
                        float y = (lineFirstStar.X - x) * (-a) + lineFirstStar.Y;
                        return new PointF(x, y);
                    }
                case 2: //L1 平行Y轴,L2存在斜率
                    {
                        float x = lineFirstStar.X;
                        //网上有相似代码的,这一处是错误的。你可以对比case 1 的逻辑 进行分析
                        //源code:lineSecondStar * x + lineSecondStar * lineSecondStar.X + p3.Y;
                        float y = (lineSecondStar.X - x) * (-b) + lineSecondStar.Y;
                        return new PointF(x, y);
                    }
                case 3: //L1,L2都存在斜率
                    {
                        if (a == b)
                        {
                            // throw new Exception("两条直线平行或重合,无法计算交点。");
                            return new PointF(0, 0);
                        }
                        float x = (a * lineFirstStar.X - b * lineSecondStar.X - lineFirstStar.Y + lineSecondStar.Y) / (a - b);
                        float y = a * x - a * lineFirstStar.X + lineFirstStar.Y;
                        return new PointF(x, y);
                    }
            }
            // throw new Exception("不可能发生的情况");
            return new PointF(0, 0);
        }

        #region  两条线段是否正交 判断!


        /// <summary>
        ///  比较算法
        /// </summary>
        /// <param name="f1"></param>
        /// <param name="f2"></param>
        /// <returns></returns>
        public bool Equal(float f1, float f2)
        {
            return (Math.Abs(f1 - f2) < 1f);
        }

        /// <summary>
        /// 比较两点坐标大小,先比较x坐标,若相同则比较y坐标
        /// </summary>
        /// <param name="p1"></param>
        /// <param name="p2"></param>
        /// <returns></returns>
        public bool dayu(Point p1, Point p2)比较两点坐标大小,先比较x坐标,若相同则比较y坐标
        {
            return (p1.X > p2.X || (Equal(p1.X, p2.X) && p1.Y > p2.Y));
        }
        /// <summary>
        /// 判断两点是否相等
        /// </summary>
        /// <param name="p1"></param>
        /// <param name="p2"></param>
        /// <returns></returns>
        public bool dengyu(Point p1, Point p2)判断两点是否相等
        {
            return (Equal(p1.X, p2.X) && Equal(p1.Y, p2.Y));
        }
        /// <summary>
        /// 计算两向量外积
        /// </summary>
        /// <param name="p1"></param>
        /// <param name="p2"></param>
        /// <returns></returns>
        public float ji(Point p1, Point p2)计算两向量外积
        {
            return (p1.X * p2.Y - p1.Y * p2.X);
        }

        //判定两线段位置关系,并求出交点(如果存在)。返回值列举如下:
        //[有重合] 完全重合(6),1个端点重合且共线(5),部分重合(4)
        //[无重合] 两端点相交(3),交于线上(2),正交(1),无交(0),参数错误(-1)
        private int GetIntersection(Point p1, Point p2, Point p3, Point p4, ref Point point)
        {
            //保证参数p1!=p2,p3!=p4
            if (p1 == p2 || p3 == p4)
            {
                return -1; //返回-1代表至少有一条线段首尾重合,不能构成线段
            }
            //为方便运算,保证各线段的起点在前,终点在后。
            if (dayu(p1, p2))
            {
                Point pTemp = p1;
                p1 = p2;
                p2 = pTemp;
                // swap(p1, p2);
            }
            if (dayu(p3, p4))
            {
                Point pTemp = p3;
                p3 = p4;
                p4 = pTemp;
                //swap(p3, p4);
            }
            //判定两线段是否完全重合
            if (p1 == p3 && p2 == p4)
            {
                return 6;
            }
            //求出两线段构成的向量
            Point v1 = new Point(p2.X - p1.X, p2.Y - p1.Y), v2 = new Point(p4.X - p3.X, p4.Y - p3.Y);
            //求两向量外积,平行时外积为0
            float Corss = ji(v1, v2);
            //如果起点重合
            if (dengyu(p1, p3))
            {
                point = p1;
                //起点重合且共线(平行)返回5;不平行则交于端点,返回3
                return (Equal(Corss, 0) ? 5 : 3);
            }
            //如果终点重合
            if (dengyu(p2, p4))
            {
                point = p2;
                //终点重合且共线(平行)返回5;不平行则交于端点,返回3
                return (Equal(Corss, 0) ? 5 : 3);
            }
            //如果两线端首尾相连
            if (dengyu(p1, p4))
            {
                point = p1;
                return 3;
            }
            if (dengyu(p2, p3))
            {
                point = p2;
                return 3;
            }//经过以上判断,首尾点相重的情况都被排除了
             //将线段按起点坐标排序。若线段1的起点较大,则将两线段交换
            if (dayu(p1, p3))
            {
                Point pTemp = p1;
                p1 = p3;
                p3 = pTemp;

                pTemp = p2;
                p2 = p4;
                p4 = pTemp;

                pTemp = v1;
                v1 = v2;
                v2 = pTemp;
                //swap(p1, p3);
                //swap(p2, p4);
                //更新原先计算的向量及其外积
                //swap(v1, v2);
                Corss = ji(v1, v2);
            }
            //处理两线段平行的情况
            if (Equal(Corss, 0))
            {
                //做向量v1(p1, p2)和vs(p1,p3)的外积,判定是否共线
                Point vs = new Point(p3.X - p1.X, p3.Y - p1.Y);
                //外积为0则两平行线段共线,下面判定是否有重合部分
                if (Equal(ji(v1, vs), 0))
                {
                    //前一条线的终点大于后一条线的起点,则判定存在重合
                    if (dayu(p2, p3))
                    {
                        point = p3;
                        return 4;//返回值4代表线段部分重合
                    }
                }//若三点不共线,则这两条平行线段必不共线。
                 //不共线或共线但无重合的平行线均无交点
                return 0;
            }//以下为不平行的情况,先进行快速排斥试验
             //x坐标已有序,可直接比较。y坐标要先求两线段的最大和最小值
            float ymax1 = p1.Y, ymin1 = p2.Y, ymax2 = p3.Y, ymin2 = p4.Y;
            if (ymax1 < ymin1)
            {
                float fTemp = ymax1;
                ymax1 = ymin1;
                ymin1 = fTemp;
                //swap(ymax1, ymin1);
            }
            if (ymax2 < ymin2)
            {
                //swap(ymax2, ymin2);
                float fTemp = ymax2;
                ymax2 = ymin2;
                ymin2 = fTemp;
            }
            //如果以两线段为对角线的矩形不相交,则无交点
            if (p1.X > p4.X || p2.X < p3.X || ymax1 < ymin2 || ymin1 > ymax2)
            {
                return 0;
            }//下面进行跨立试验
            Point vs1 = new Point(p1.X - p3.X, p1.Y - p3.Y), vs2 = new Point(p2.X - p3.X, p2.Y - p3.Y);
            Point vt1 = new Point(p3.X - p1.X, p3.Y - p1.Y), vt2 = new Point(p4.X - p1.X, p4.Y - p1.Y);
            float s1v2, s2v2, t1v1, t2v1;
            //根据外积结果判定否交于线上
            if (Equal(s1v2 = ji(vs1, v2), 0) && dayu(p4, p1) && dayu(p1, p3))
            {
                point = p1;
                return 2;
            }
            if (Equal(s2v2 = ji(vs2, v2), 0) && dayu(p4, p2) && dayu(p2, p3))
            {
                point = p2;
                return 2;
            }
            if (Equal(t1v1 = ji(vt1, v1), 0) && dayu(p2, p3) && dayu(p3, p1))
            {
                point = p3;
                return 2;
            }
            if (Equal(t2v1 = ji(vt2, v1), 0) && dayu(p2, p4) && dayu(p4, p1))
            {
                point = p4;
                return 2;
            }//未交于线上,则判定是否相交
            if (s1v2 * s2v2 > 0 || t1v1 * t2v1 > 0)
            {
                return 0;
            }//以下为相交的情况,算法详见文档
             //计算二阶行列式的两个常数项
            float ConA = p1.X * v1.Y - p1.Y * v1.X;
            float ConB = p3.X * v2.Y - p3.Y * v2.X;
            //计算行列式D1和D2的值,除以系数行列式的值,得到交点坐标
            point.X = (int)((ConB * v1.X - ConA * v2.X) / Corss);
            point.Y = (int)((ConB * v1.Y - ConA * v2.Y) / Corss);
            //正交返回1
            return 1;
        }

        /// <summary>
        ///   根据  矩形和  移动方向获取    行走路径。
        /// </summary>
        /// <param name="p1"> 矩形 左上角</param>
        /// <param name="p2">矩形 右下角</param>
        /// <param name="p3"> lin  开始点</param>
        /// <param name="p4">lin  结束点</param>
        /// <param name="regionDir"> 角朝向</param>
        /// <param name="startDoc"> 开始点 是否在矩形内</param>
        /// <param name="endDoc">结束点 是否在矩形内</param>
        /// <returns></returns>
        public List<Point> GetPointList(Point p1, Point p2, Point p3, Point p4, string regionDir, bool startDoc, bool endDoc)
        {
            List<Point> points = new List<Point>();
            Point point = new Point();
            Point startPoint1 = new Point(), endPoint1 = new Point(), startPoint2 = new Point(), endPoint2 = new Point();
            switch (regionDir)
            {
                case "左上角":
                    startPoint1 = new Point(p1.X, p2.Y);
                    endPoint1 = p2;

                    startPoint2 = new Point(p2.X, p1.Y);
                    endPoint2 = p2;
                    break;
                case "左下角":
                    startPoint1 = p1;
                    endPoint1 = new Point(p2.X, p1.Y);

                    startPoint2 = new Point(p2.X, p1.Y);
                    endPoint2 = p2;
                    break;
                case "右上角":
                    startPoint1 = new Point(p1.X, p2.Y);
                    endPoint1 = p2;

                    startPoint2 = p1;
                    endPoint2 = new Point(p1.X, p2.Y);
                    break;
                case "右下角":
                    startPoint1 = p1;
                    endPoint1 = new Point(p2.X, p1.Y);

                    startPoint2 = p1;
                    endPoint2 = new Point(p1.X, p2.Y);
                    break;

            }

            // 获取 交点信息。 
            var posDoc1 = GetIntersection(startPoint1, endPoint1, p3, p4, ref point);
            var posDoc2 = GetIntersection(startPoint2, endPoint2, p3, p4, ref point);
            if (startDoc)
            {
                if (posDoc1 == 1 || posDoc2 == 1)
                {
                    points.Add(point);
                    points.Add(p4);
                }
            }
            else if (endDoc)
            {
                if (posDoc1 == 1 || posDoc2 == 1)
                {
                    points.Add(p3);
                    points.Add(point);
                }

            }
            return points;
        }


        public List<Point> NotRetraction(string regionDir, double[] edgeInfo, ref Point sPoint, ref Point ePoint)
        {
            double leftOffset = 0, topOffset = 0, rightOffset = 0, bottomOffset = 0;

            switch (edgeInfo.Length)
            {
                case 1:
                    leftOffset = edgeInfo[0];
                    topOffset = edgeInfo[0];
                    rightOffset = edgeInfo[0];
                    bottomOffset = edgeInfo[0];

                    break;
                //case 2:
                //    //leftOffset = edgeInfo[0];
                //    //rightOffset = edgeInfo[0];

                //    //topOffset = edgeInfo[1];
                //    //bottomOffset = edgeInfo[1];
                //    break;
                //case 3:
                //    //leftOffset = edgeInfo[0];
                //    //topOffset = edgeInfo[1];
                //    //rightOffset = edgeInfo[2];
                //    //bottomOffset = edgeInfo[3];
                //    break;
                case 4:
                    leftOffset = edgeInfo[0];
                    topOffset = edgeInfo[1];
                    rightOffset = edgeInfo[2];
                    bottomOffset = edgeInfo[3];
                    break;
            }
            switch (regionDir)
            {
                case "左上角":
                    sPoint = new Point((int)(sPoint.X), (int)(sPoint.Y));
                    ePoint = new Point((int)(ePoint.X + leftOffset), (int)(ePoint.Y + topOffset));


                    break;
                case "左下角":
                    sPoint = new Point((int)(sPoint.X), (int)(sPoint.Y - bottomOffset));
                    ePoint = new Point((int)(ePoint.X + leftOffset), ePoint.Y);
                    break;
                case "右上角":
                    sPoint = new Point((int)(sPoint.X - rightOffset), (int)(sPoint.Y));
                    ePoint = new Point((int)(ePoint.X), (int)(ePoint.Y + topOffset));

                    break;
                case "右下角":
                    sPoint = new Point((int)(sPoint.X - rightOffset), (int)(sPoint.Y - bottomOffset));
                    ePoint = new Point((int)(ePoint.X), (int)(ePoint.Y));
                    break;
                case "左边":
                    sPoint = new Point((int)(sPoint.X), (int)(sPoint.Y - topOffset));
                    ePoint = new Point((int)(ePoint.X + leftOffset), (int)(ePoint.Y + bottomOffset));
                    break;
                case "右边":
                    sPoint = new Point((int)(sPoint.X - rightOffset), (int)(sPoint.Y - topOffset));
                    ePoint = new Point((int)(ePoint.X), (int)(ePoint.Y + bottomOffset));
                    break;
                case "上边":
                    sPoint = new Point((int)(sPoint.X - leftOffset), (int)(sPoint.Y));
                    ePoint = new Point((int)(ePoint.X + rightOffset), (int)(ePoint.Y + topOffset));
                    break;
                case "下边":
                    sPoint = new Point((int)(sPoint.X - leftOffset), (int)(sPoint.Y - bottomOffset));
                    ePoint = new Point((int)(ePoint.X + rightOffset), (int)(ePoint.Y));
                    break;

            }
            return null;
        }
        #endregion
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值