Python实现非递归的预测分析

算法:非递归的预测分析
输入: 输入序列w和文法G的预测分析表M
输出 :若w属于L(G) , 得到w的一个最左推到,否则指出一个错误
注:使用n代替ε 使用小写字母r代替’ 即 使用rT 代替 T’

import copy

#输入输入序列w 和预测分析表M ,非终结符的集合N ,终结符的集合T 开始进行预测分析
def prediction_analyze(w, M ,N , T):
    mat = "步骤{:<15}\t栈内容 {:<20}\t当前输入 {:<30}\t动作{:<30}\t描述 {:<20}"
    print(mat.format(" "," "," "," "," ",))
    Stack = list()  # 创建符号栈
    Stack.append('#')#压入结束表示符#
    Stack.append(N[0])#压入开始符,即非终结符的集合N的第一个元素
    top = len(Stack)-1 #top用于记录栈顶的下标,即最后一个元素下标
    ip = 0#用于记录输入序列w中的终结符的下标,从首部开始
    step = 1 #记录步骤
    # 当栈非空
    while Stack:
        content = ''.join(Stack)#将栈内容转为字符串
        inputchar = ''.join(w[ip:])
        action = ""
        des = ""
        a = w[ip] #a用于获取到当前输入符号
        x = Stack[top]  #x用于获取栈顶的元素
        if  x in T:#如果栈顶元素为终结符,判断是否匹配
            if x == a: # 如果匹配到终结符
                if Stack[-1] == '#' and a == '#':
                    mat = "{:<20}\t {:<25}\t {:<30}\t {:<40}\t{:<20}"
                    print(mat.format(step, content, inputchar," ","正确结束"))

                    break
                action = "pop(" + x + "), next(ip)"
                des = "匹配"+x
                Stack.pop()  # 弹出栈顶元素
                top -= 1
                ip += 1  # 指向w的下一个字符
            else:
                print("出错!栈顶终结符不匹配。")
                return False
        else:#如果栈顶元素为非终结符,查表展开产生式
            xIndex = N.index(x)#获取x在N中的下标,方便查表
            if a in M[xIndex]:#如果M[X,a]不为空
                result = copy.deepcopy(M[xIndex][a]) #得到产生式的右侧(格式为list)
                action = "pop("+x+"), push("+''.join(result)+")"
                des = "按" + x+"->"+''.join(result)+"展开"

                Stack.pop()# 弹出栈顶元素
                top-=1
                if result[0] == 'n':  # 如果为n,无需push
                    action = "pop(" + x + ")       "
                else:
                    # 将展开结果取反序压入栈中
                    result.reverse()
                    for j in range(0, len(result)):
                        Stack.append(result[j])
                        top+=1

            else:
                print("出错!产生式不匹配。")
                return False

        #输出本次执行情况
        mat = "{:<20}\t {:<25}\t {:<30}\t {:<30}\t{:<20}"
        print(mat.format (step, content, inputchar, action, des))
        step+=1 #步骤数加1 继续循环



if __name__ == '__main__':
    print("---------即将开始收集数据,请按提示操作---------' ")

    print("请输入文法G的非终结符的集合N , 输入格式为List , 如['L' , 'E' , 'rE' , 'T' , 'rT' , 'F'] ")
    N = eval(input(":"))
    # # #print( N)
    print("请输入文法G的终结符的集合T , 输入格式为List , 如['id' , 'num' , '+' , '-' , '* ', '/ ', 'mod' , '(' , ')' , '; ', '#'] ")
    T = eval(input(":"))
    # # print(T)
    # #预测表: [{'id' : ['E', ';' , 'L'] ,       'num' : ['E', ';' , 'L'],      '(' : ['E', ';' , 'L'],     '#' : ['n']} ,{'id' : ['T', 'rE'] ,       'num' : ['T', 'rE'] ,     '(' : ['T', 'rE'] } ,{'+' : ['+' , 'T' ,  'rE'] ,      '-' : ['-' , 'T' ,  'rE'] ,       ')' : ['n'] ,       ';' : ['n'] } ,{'id' : ['F' , 'rT'] ,      'num' : ['F' , 'rT'] ,       '(' : ['F' , 'rT'] } ,{'+' : ['n'] ,      '-' : ['n'] ,     '*' : ['*' , 'F', 'rT'] ,     '/' : ['/' , 'F', 'rT'] ,     'mod' : ['mod' , 'F', 'rT'] ,       ')' : ['n'] ,       ';' : ['n']} ,{'id' : ['id'] ,      'num' : ['num'] ,       '(' : ['(', 'E' , ')'] }  ]
    print( "请输入文法G的预测表M , 输入格式如{'id' : ['id'] ,      'num' : ['num'] ,       '(' : ['(', 'E' , ')'] }  ] ")
    #  "[{'id' : ['E', ';' , 'L'] ,       'num' : ['E', ';' , 'L'],      '(' : ['E', ';' , 'L'],     '#' : ['n']} , \n "
    #  "{'id' : ['T', 'rE'] ,       'num' : ['T', 'rE'] ,     '(' : ['T', 'rE'] } ,  \n "
    #  "{'+' : ['+' , 'T' ,  'rE'] ,      '-' : ['-' , 'T' ,  'rE'] ,       ')' : ['n'] ,       ';' : ['n'] } ,  \n "
    #  "{'id' : ['F' , 'rT'] ,      'num' : ['F' , 'rT'] ,       '(' : ['F' , 'rT'] } ,   \n"
    #  "{'+' : ['n'] ,      '-' : ['n'] ,     '*' : ['*' , 'F', 'rT'] ,     '/' : ['/' , 'F', 'rT'] ,     'mod' : ['mod' , 'F', 'rT'] ,       ')' : ['n'] ,       ';' : ['n']} ,   \n"
    #  "{'id' : ['id'] ,      'num' : ['num'] ,       '(' : ['(', 'E' , ')'] }  ] ")
    M = eval(input(":"))

    # #print(M)
    #print("---------收集数据完成,请按提示操作---------' ")
    # N =['L' , 'E' , 'rE' , 'T' , 'rT' , 'F']
    # T = ['id' , 'num' , '+' , '-' , '*', '/ ', 'mod' , '(' , ')' , ';', '#']
    # M = [{'id' : ['E', ';' , 'L'] ,       'num' : ['E', ';' , 'L'],      '(' : ['E', ';' , 'L'],     '#' : ['n']} ,
    #          {'id' : ['T', 'rE'] ,       'num' : ['T', 'rE'] ,     '(' : ['T', 'rE'] } ,
    #          {'+' : ['+' , 'T' ,  'rE'] ,      '-' : ['-' , 'T' ,  'rE'] ,       ')' : ['n'] ,       ';' : ['n'] } ,
    #         {'id' : ['F' , 'rT'] ,      'num' : ['F' , 'rT'] ,       '(' : ['F' , 'rT'] } ,
    #         {'+' : ['n'] ,      '-' : ['n'] ,     '*' : ['*' , 'F', 'rT'] ,     '/' : ['/' , 'F', 'rT'] ,     'mod' : ['mod' , 'F', 'rT'] ,       ')' : ['n'] ,       ';' : ['n']} ,
    #         {'id' : ['id'] ,      'num' : ['num'] ,       '(' : ['(', 'E' , ')'] }  ]
    while True:
        w = eval(input('请输入要分析的序列w(以#号结束):'))
        #w = ['id' , '+' , 'id' , '*' , 'id' , ';' , '#']
        print("----------------------------------------------------分析过程----------------------------------------------------")
        prediction_analyze(w, M ,N , T)#开始进行预测分析
        print("----------------------------------------------------分析结束----------------------------------------------------")
        break
第三次上机—语法分析1 目的:熟练掌握自上而下的语法分析方法,并能用C++程序实现。 要求: 1. 使用的文法如下: E ® TE ¢ E ¢ ® + TE ¢ | e T ® FT ¢ T ¢ ® * FT ¢ | e F ® (E) | id 2. 对于任意给定的输入串(词法记号流)进行语法分析,递归下降方法和非递归预测分析方法可以任选其一来实现。 3. 要有一定的错误处理功能。即对错误能提示,并且能在一定程度上忽略尽量少的记号来进行接下来的分析。可以参考书上介绍的同步记号集合来处理。 可能的出错情况:idid*id, id**id, (id+id, +id*+id …… 4. 输入串以#结尾,输出推导过程中使用到的产生式。例如: 输入:id+id*id# 输出:E ® TE ¢ T ® FT ¢ F ® id E ¢ ® + TE ¢ T ® FT ¢ …… 如果输入串有错误,则在输出中要体现是跳过输入串的某些记号了,还是弹栈,弹出某个非终结符或者是终结符了,同时给出相应的出错提示信息。比如: idid*id对应的出错信息是:“输入串跳过记号id,用户多输入了一个id”; id**id对应的出错信息是:“弹栈,弹出非终结符F,用户少输入了一个id” (id+id对应的出错信息是:“弹栈,弹出终结符 ) ,用户少输入了一个右括号(或者说,括号不匹配)” 有余力的同学可进一步考虑如下扩展: 1. 将递归下降方法和非递归预测分析方法都实现 2. 在语法分析的过程中调用第二次上机的结果,即利用词法分析器来返回一个记号给语法分析器。 3. 编写First和Follow函数,实现其求解过程。 测试文法: A->BCDE B->aBA|ε C->F|ε D->b|c|ε E->e|ε F->d|ε
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值