效果一览
文章概述
本文将介绍如何使用长短期记忆(Long Short-Term Memory,LSTM)网络来预测降雨时间序列。LSTM是一种递归神经网络(Recurrent Neural Network,RNN),专门用于处理序列数据中的长期依赖关系。
每年的降雨量数据可能是相当不稳定的。与温度不同,温度通常在四季中表现出明显的趋势,而雨量作为一个时间序列可能是相当不稳定的。LSTM网络能够捕捉和记忆长序列中的信息,因此非常适用于降雨时间序列数据。
与传统的前馈神经网络不同,LSTM网络具有可以存储和更新信息的记忆单元。这使得它们能够学习输入序列中的模式和依赖关系。
LSTM单元的关键组成部分是输入门、遗忘门和输出门。这些门控制信息进出单元的流动,使LSTM能够选择性地保留或丢弃信息。此外,细胞状态作为长期记忆,跨时间步保留相关信