BZOJ1455[罗马游戏]

Description

罗马皇帝很喜欢玩杀人游戏。 他的军队里面有n个人,每个人都是一个独立的团。最近举行了一次平面几何测试,每个人都得到了一个分数。 皇帝很喜欢平面几何,他对那些得分很低的人嗤之以鼻。他决定玩这样一个游戏。 它可以发两种命令: 1. Merger(i, j)。把i所在的团和j所在的团合并成一个团。如果i, j有一个人是死人,那么就忽略该命令。 2. Kill(i)。把i所在的团里面得分最低的人杀死。如果i这个人已经死了,这条命令就忽略。 皇帝希望他每发布一条kill命令,下面的将军就把被杀的人的分数报上来。(如果这条命令被忽略,那么就报0分)

Input

第一行一个整数n(1<=n<=1000000)。n表示士兵数,m表示总命令数。 第二行n个整数,其中第i个数表示编号为i的士兵的分数。(分数都是[0..10000]之间的整数) 第三行一个整数m(1<=m<=100000) 第3+i行描述第i条命令。命令为如下两种形式: 1. M i j 2. K i

Output

如果命令是Kill,对应的请输出被杀人的分数。(如果这个人不存在,就输出0)

Sample Input

5

100 90 66 99 10

7

M 1 5

K 1

K 1

M 2 3

M 3 4

K 5

K 4
Sample Output

10

100

0

66


solution: 可并堆:左偏树

#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;

#define LL long long 
#define N 2000010

int n, m, f[N], a[N];
bool did[N];

struct treenode{
    int v, l, r, d;
    treenode(){ d = l = r = v = 0 ;}
};
treenode T[N];

int merge( int a, int b ){
    if ( a == 0 || b == 0 ) return a+b;
    if ( T[a].v > T[b].v ) swap( a, b );
    T[a].r = merge( T[a].r, b );
    if ( T[T[a].l].d < T[T[a].r].d ) swap( T[a].l, T[a].r );
    T[a].d = T[a].r ? T[T[a].r].d + 1 : 0;
    return a;
}

int find( int x ){
    return x == f[x] ? x : f[x] = find( f[x] );
}

int main(){
    scanf( "%d", &n );
    for ( int i = 1; i <= n; i++)
        scanf( "%d", &a[i]), f[i] = i, T[i].v = a[i];
    scanf( "%d", &m );
    T[0].d = -1;
    int x, y;
    char str[10];
    for ( int i = 1; i <= m; i++){
        scanf( "%s", str);
        if ( str[0] == 'M'){
            scanf( "%d%d", &x, &y );
            if ( did[x] || did[y] ) continue;
            int p = find(x), q = find(y);
            if ( p != q ){
                int t = merge( p, q );
                f[p] = t, f[q] = t;
            }
        }else {
            scanf( "%d", &x);
            int p = find( x );
            if ( did[x] ){
                printf( "0\n");
                continue;
            }
            printf( "%d\n", T[p].v);
            did[p] = 1;
            int t = merge( T[p].l, T[p].r );
            f[p] = t, f[t] = t;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值