LeetCode 39. Combination Sum

题目:

Given a set of candidate numbers (candidates(without duplicates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.

The same repeated number may be chosen from candidates unlimited number of times.

Note:

  • All numbers (including target) will be positive integers.
  • The solution set must not contain duplicate combinations.

Example 1:

Input: candidates = [2,3,6,7], target = 7,
A solution set is:
[
  [7],
  [2,2,3]
]

Example 2:

Input: candidates = [2,3,5], target = 8,
A solution set is:
[
  [2,2,2,2],
  [2,3,3],
  [3,5]
]

 

Constraints:

  • 1 <= candidates.length <= 30
  • 1 <= candidates[i] <= 200
  • Each element of candidate is unique.
  • 1 <= target <= 500

也是backtracking的经典,要求的是求出给定的list里任意数字的组合之和=target的组合数,注意可以对一个数字使用多次!基本套路跟combination差不多,但由于可以使用重复的数字,因此我们需要在backtrack的时候再对自己backtrack一遍(就是index不需要+1)。另外刚开始没想到可以直接把target减掉,而是每次计算一遍temp里的数字之和,以后可以注意一下。时间复杂度按lc solution是O(N^(M/T)​+1),过于复杂,放弃。但lc solution对这道题的讲解还是很详细的,五星好评。

Runtime: 3 ms, faster than 81.09% of Java online submissions for Combination Sum.

Memory Usage: 39.3 MB, less than 96.86% of Java online submissions for Combination Sum.

class Solution {
    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        List<List<Integer>> result = new ArrayList<>();
        backtrack(0, candidates, target, result, new ArrayList<>());
        return result;
    }
    
    private void backtrack(int start, int[] candidates, int target, List<List<Integer>> result, List<Integer> temp) {
        if (target == 0) {
            result.add(new ArrayList<>(temp));
        } else if (target < 0) {
            return;
        }
        for (int i = start; i < candidates.length; i++) {
            temp.add(candidates[i]);
            backtrack(i, candidates, target - candidates[i], result, temp);
            temp.remove(temp.size() - 1);
        }
    }
}

另外还有dp的解法,暂时战略性放弃。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值