题目:
Given a set of candidate numbers (candidates
) (without duplicates) and a target number (target
), find all unique combinations in candidates
where the candidate numbers sums to target
.
The same repeated number may be chosen from candidates
unlimited number of times.
Note:
- All numbers (including
target
) will be positive integers. - The solution set must not contain duplicate combinations.
Example 1:
Input: candidates =[2,3,6,7],
target =7
, A solution set is: [ [7], [2,2,3] ]
Example 2:
Input: candidates = [2,3,5],
target = 8,
A solution set is:
[
[2,2,2,2],
[2,3,3],
[3,5]
]
Constraints:
1 <= candidates.length <= 30
1 <= candidates[i] <= 200
- Each element of
candidate
is unique. 1 <= target <= 500
也是backtracking的经典,要求的是求出给定的list里任意数字的组合之和=target的组合数,注意可以对一个数字使用多次!基本套路跟combination差不多,但由于可以使用重复的数字,因此我们需要在backtrack的时候再对自己backtrack一遍(就是index不需要+1)。另外刚开始没想到可以直接把target减掉,而是每次计算一遍temp里的数字之和,以后可以注意一下。时间复杂度按lc solution是O(N^(M/T)+1),过于复杂,放弃。但lc solution对这道题的讲解还是很详细的,五星好评。
Runtime: 3 ms, faster than 81.09% of Java online submissions for Combination Sum.
Memory Usage: 39.3 MB, less than 96.86% of Java online submissions for Combination Sum.
class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> result = new ArrayList<>();
backtrack(0, candidates, target, result, new ArrayList<>());
return result;
}
private void backtrack(int start, int[] candidates, int target, List<List<Integer>> result, List<Integer> temp) {
if (target == 0) {
result.add(new ArrayList<>(temp));
} else if (target < 0) {
return;
}
for (int i = start; i < candidates.length; i++) {
temp.add(candidates[i]);
backtrack(i, candidates, target - candidates[i], result, temp);
temp.remove(temp.size() - 1);
}
}
}
另外还有dp的解法,暂时战略性放弃。