毕业设计-基于计算机图像识别的垃圾智能分类系统

目录

前言

课题背景和意义

实现技术思路

一、YOLOv3 算法

二、基于 Tensorflow2 的 YOLOv3 算法垃圾识别

三、总结

实现效果图样例

最后


前言


    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

选题指导: https://blog.csdn.net/qq_37340229/article/details/128243277

大家好,这里是海浪学长毕设专题,本次分享的课题是

🎯毕业设计-基于计算机图像识别的垃圾智能分类系统

课题背景和意义

垃圾分类是推动我国新型城镇生态文明水平提高的一大重 要举措。为提高垃圾分类效率,应对日益繁杂的垃圾分类工作,使垃圾分类智能化,高效化。运用卷积神经网络解决垃圾 分类问题,对 YOLOv3 基础算法进行研究改进,并制作垃圾种类数据集,结合参数迁移学习训练垃圾分类识别模型。党的十九届五中全会擘画了党和国家未来五年乃至更 长时期各项事业发展的宏伟蓝图,明确了发展的目标和路径, 其中对垃圾分类问题提出了新的要求,表现垃圾处理正处于一 个新的台阶,对此,垃圾 分类重在按一定规定或标准,将垃圾分类储存、投放和搬 运,使其变为一种公共资源的做法,而人们在处理生活垃圾 分类时对垃圾类型问题处理不当,将会导致分类处理垃圾工 作效率低下,甚至造成超出预期的经济损失和环境破坏。 对此,在大数据环境下,结合当前的计算机视觉知识, 对垃圾识别进行一定的研究。基于深度学习的目标检 测算法的基本原理是利用大量卷积运算实现检测算法自主对 目标图像的特征进行抽象和提取,并且对检测到的特征进行 训练从而总结出其他的特征,在检测计算机数字图像上发挥 着重大的作用。

实现技术思路

一、YOLOv3 算法

YOLOv3 模型结构

YOLOv3 是 YOLO 系列算法中在 YOLOv1 与 YOLOv2 的基础上的改进版本,在精确度与速度的权衡中发展出来。 YOLOv3 仅使用卷积层,可以说是一个全卷积网络。

YOLOv3 其网络结构图如图所示,该网络借鉴了darknet-53 的前 52 层,去除了最后的全连接层,大量的使 用了残差的跳层连接。在之前的网络中,采样是使用 size 为 2×2,stride 为 2 的 max-pooling 或 average-pooling 进行降采 样。但在这网络中,使用的则是 stride 为 2 的卷积来降采样。 与此同时,还在网络中使用了上采样、route 操作等,并且 在一个网络中进行了 3 次检测。

 为了保证分类加检测的效果更好,且由于网络的深度 与其所表达的特征是相辅相成的,所以我们需要采用残差 的跳层连接来提高网络的深度,使得网络在更深的情况下继 续收敛下去,并使得模型能够继续训练。而在最后残差中的 1×1 卷积,使用的是 network in network 的想法,该想法减 少了每次卷积的 channel 数,这起到了减少参数量和减少工 作的计算量。

YOLOv3 利用上采样可以使得 16 倍降采样和 8 倍降采 样使用深层特征。而直接进行四次下采样的 16 倍降采样和 直接进行三次下采样的 8 倍降采样的浅层特征与采用了上采 样的深层特征的 feature map 大小是一样的。为了能够利用 这些浅层特征,YOLOv3 诞生了 route 层,它把上采样后的 16 倍降采样的 feature map 与直接四次降采样的 feature map 在 channel 那里进行拼接。同理 8 倍降采样也是如此操作。 这样做的好处是使得网络能够同时学习浅层特征和深层特 征,其表达效果会更好。

边界框预测

预测类别时,为了满足多标签对象这一条件,在预测 类别时,使用了 logistic 回归代替 softmax 回归。softmax 回 归的前提是各类别分类是相互独立的,这种前提在某些时候 是没有意义的,因此 YOLOv3 使用 logistic 回归来预测。通 过 logistic 预测每个类别得分并使用一个阈值来对目标进行 多标签预测,而阈值高的类别是该边界框的真正类别。为了 减少后续计算量,logistic 回归在进行 predict 前,去掉了不 必要的 anchor。而如何去除不必要的 anchor,首先 logistic 回归会对 anchor 所包围区域都进行目标性评分(objectness  score),评分低的 anchor 将会被淘汰。因此即使被淘汰的 anchor 区域的值高于我们所设定的阈值,我们也不会对它进 行 predict。不同于 faster R-CNN 的是,YOLOv3 只会对最佳 的模板框进行操作。而 logistic 回归在这一过程中的作用便 是:从 9 个 anchor priors 里选出 objectness score(目标存在 可能性得分)最高的那一个。 YOLOv3 的 bounding Box 由 YOLOv2 又做出了更好的 改进,如图所示。

在 YOLOv2 和 YOLOv3 中,都采用了 对图像中的物体进行 k-means 聚类。 特征图中的每一个 cell 都会预测3个bounding box,总共有(52×52+26×26+13×13) ×3=10 647 个预测框。每个 bounding box 都会预测三个东西:

(1)每个框的位置,即中心坐标为(tx,ty),框的高和宽 分为别 bh 和 bw。

(2)一个 objectness prediction。

(3)N 个 类别,coco 数据集 80 类,voc20 类。

上图展示了目标边界框的预测过程。图中的虚线部 分为预设边界框,通过网络预测的偏移量计算得到的预测边 界框为实线矩形框。中心坐标为(cx,cy),预设边界框的 宽和高分别为(pw,py),(tx,ty,tw,th)分别为网络预测 的边界框中心偏移量(tx,ty)以及宽高缩放比(tw,th), 而最终所预测的目标边界框则为(bx,by,bw,bh)。

二、基于 Tensorflow2 的 YOLOv3 算法垃圾识别

图像数据的获取

本次实验将垃圾分为四大类:厨余垃圾,可回收垃圾, 有害垃圾。具体采集方法,利用网络爬虫技术在各大图片 搜集网站搜索所需的图片,并对图片进行自动排序命名为 0001.jpg、0002.jpg……,在进行手工筛选的同时,对这些图 片进行预处理,由于收集到的图片中,有些受天气等外界影 响较大,需对得到初始数据集后进行去噪和增强处理,使得图 片中的特征更加明显,最后利用 labellmg 对样本进行手动标记。

数据集标注

通过利用 labellmg 对爬取的样本图片进行标注,如图所示。并将所标记图片依次保存为 XML 文件。由于仪器设 备的限制,本次我们主要对可回收垃圾进行样本标注,在这 些样本中纸巾和塑料的占比大,其他类型占比小。

三、总结

经过实验,发现没有检测框的图片,均是数据集中样本 类型较少的可回收垃圾,而有检测框的可回收垃圾的图片 中,样本数较多的纸巾辨识度较高。 因此可知:

(1)数据集的数量对目标检测有影响。

(2) 训练时的迭代次数增加可降低 loss,对目标检测有影响。

(3) 在运行代码过程中发现,适当调整置信度和 IOU,能够影响 图像检测的检测框。

实现效果图样例

图像识别的垃圾智能分类系统:

我是海浪学长,创作不易,欢迎点赞、关注、收藏、留言。

毕设帮助,疑难解答,欢迎打扰!

最后

  • 5
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值