目录
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
选题指导: https://blog.csdn.net/qq_37340229/article/details/128243277
大家好,这里是海浪学长毕设专题,本次分享的课题是
🎯毕业设计-基于深度学习的火焰图像识别
课题背景和意义
火灾预警对于人民生活和工业安防具有重大意义。火灾具有突发性、火焰燃烧蔓 延较快的特点,同时火灾对人民的生活、财产等造成了严重的威胁。国家火灾统计报 告指出,2003 至 2012 年,我国年平均突发火灾 18 万起,年均死亡人数 1698 人,年 均受伤人数在 1426 人次,年均直接损失在 16.26 亿元。随着经济社会的快速发展和工 业原料的多样化,火灾造成的危害正在逐步增加。 传统的基于物理传感器的火灾 识别方法,多数采样用烟雾传感器、温度传感器、紫外线传感器等进行实时监控区域 的物理信号状态,从而达到火焰、烟雾检测的效果,然而该类方法对环境的依赖性较 强,且识别范围受限,难以有效地识别火焰;同时需要耗费大量的人力、物力进行部 署和维护,对开展火灾防治工作提出了严峻的挑战。基于图像特征的火焰识别方法主 要通过提取火焰图像特征,构建分类器进行火焰识别,一定程度上缓解了对外界环境 的依赖性,但是该类方法大多根据先验知识进行特征提取,容易陷入局部最优值,从 而影响火焰识别效果。如何提高火焰识别精度是火焰识别研究的重点。
实现技术思路
一、相关理论介绍
卷积神经网络(Convolution Neural Network,CNN)是一种前馈神经网络,早期 Yan Lecun[25]等将其成功运用于手写数字识别。CNN 作为深度学习的一个分支,主要 有以下特点:(1)局部感知;(2)权值共享;(3)多个卷积核;(4)下采样技术;
LeNet
图展示的是 LeNet 的网络结构,如图所示,LeNet 是一个 8 层的前馈卷积神经 网络,除输入和输出层外,共有 6 层,这 6 层中卷积层与下采样层交替连接。具体过 程如下所示:
1、卷积层
下列公式代表的是卷积层中每个神经元的计算形式。
在卷积神经网络中,每个特征图可以有不同的卷积核,从而在高层上提取到更加 多样的特征,从而使得到的特征具有位移不变性。如图所示,使用 5 个不同的 5*5 的卷积滤波器对火焰输入图像进行卷积,得到了 5 种不同类型的特征图:
2、下采样层
下采样层不会改变输入输出的特征图数量,但会减小特征图的尺寸。例如有 N 个 输入特征图,对应就有 N 个输出特征图,但是每个输出特征图的尺寸是输入特征图的1/2。公式表示的是下采样的过程。
二、基于局部特征过滤的快速火焰识别方法研究
火焰颜色空间特性
Celik等人提出,在彩色图像的 R、G、B 通道中,对于火焰区域像素,对应的像 素点应满足红色通道像素值大于整个图像的红色通道分量均值,对应像素点的红色通 道像素值大于蓝色通道像素值,蓝色通道像素值大于绿色通道像素值。如下所示:
公式(中的 R(x, y) 、 G(x, y) 、 B(x, y) 分别代表的是(x, y)像素点在红 色、绿色、蓝色通道的像素值, R mean 的代表的是整个图像中红色通道分量所有像素值 的平均值。将 R、G、B 三个颜色通道分量的比值作为判断火焰像 素的另一个准则。
局部过滤SIFT 特征提取
1、SIFT 特征提取
尺度不变特征变换算法(Scale-invariant feature transform,SIFT)有 Lowe提出, 主要过程如下,首先对每帧图像进行 SIFT 处理。过程如下:首先建立不同尺度下的图 像金字塔,进行高斯差分,公式如下:
公式中的*代表的是卷积操作,G(x, y, ) σ 代表的是二维正态分布, D(x, y, ) σ 由像 素(x, y)在不同尺度下的差与输入图像进行卷积生成。找到高斯差分的极值点即为图像 的关键点。
进一步筛选关键点,通过上述公式去除对比度较低的关键点。若 ˆ D ( x) 0.03 ≥ ,该特征点将会保留,否则丢弃,通过公式去除关键点中不稳 定的边缘响应点,当关键点满足如下公式时,特征点保留,否则丢弃。
2、引入火焰颜色空间特性以及特征编码
引入火焰在颜色空间中的特性,计算 SIFT 提取的特征点在 RGB 颜色空间中分量,由于不同的图像通过 SIFT 特征提取后得到的特征点的数目不同,这就造成了无法 将图像的特征描述符直接放入模型进行训练。Csurka[31]等人提出了关键点词袋(Bag of Keypoinsts, BOK)方法。BOK 是一种对图像仿射变换具有不变特性的向量量化技术, 同时对背景杂乱的图像具有较高的鲁棒性。
ELM 模型构建
极限学习机(Extreme Learning Machine, ELM)最早于 2004 年首次提出, 它是一种单隐层前馈神经网络,其特点是随机生成输入层参数。极限学习机的这种特 性反应了一定的生物学习机制。利用 Moore-Penrose 广义逆,从而得到最小 L2 范数 的输出层权重,整个学习过程中只需调节隐藏神经元的个数,此外极限学习机结构简 单,具有对目标函数的极限逼近能力,因此具有非常快的学习速度和优秀的泛化能 力。极限学习机模型如图所示。
构建极限学习机模型。如图所示极限学习机的代价函数如下所示:
该方法的流程图如图所示。从实验流程的角度,该方法又可分为三个部分:数 据预处理、特征提取和模型训练。数据预处理主要将图像数据库中的视频转换成帧图 像,特征提取主要将火焰颜色空间特性引入 SIFT 特征提取,并使用关键点词袋法处理 得到特征向量。模型训练主要是构造极限学习机分类模型。
三、基于多通道卷积神经网络的火焰识别方法研究
整体流程图
构建基于多通道的卷积神经网络(Multi-channel Convolution neural Network, MCCNN)来进行火焰识别。相较于 LeNet,MCCNN 考虑了火焰图像的多通 道颜色信息,同时对于含有时序性信息的火焰视频数据,增加了帧间的帧差与火焰的 颜色通道共同构成 MCCNN 的输入,从而将时序信息与火焰颜色信息结合到一起,从 而提高火焰识别精度。图本章的流程图:
MCCNN 模型结构
多通道卷积神经网络模型如图所示,使用 R、G、B 三通道的彩 色图像作为输入。采用一个 8 层的卷积神经网络。模型训练过程中采用反向传播在每批训练结束后更新模型参数,同时在每轮结束 后保存在测试集上表现最好的模型。
GPU 加速
随着大数据的到来,快速并行计算越来越受到人们的关注,尤其是深度学习领域。 GPU 并行计算极大地减少了深度学习模型训练的时间代价,相对于 CPU,GPU 内所包 含的大量晶体管有助于进行高速复杂科学计算。深度学习的前向计算和后向传播(Back pro)调整参数在 GPU 中可以快速用矩阵乘法实现。图是本章模型任务分配图。
四、基于深度迁移学习的火焰烟雾识别
VGG-16 网络
相对于传统的卷积神经网络,VGG-16 在深度上做了提升。图表示的是 VGG- 16 网络。网络的输入采用 224*224 的 RGB 彩色图像。网络中共有 13 个卷积层,5 个 下采样层以及 3 个全连接层。所有的卷积滤波器的大小为 3*3,卷积步长为 1。使用 Max-pooling 进行下采样。网络中共有 3 个全连接,对应的神经元节点个数为 4096、 4096、1000,最后一个全连接层神经元节点对应 ImageNet 中标签的数量。网络中共有 16 层含有参数,参数个数为 1380000000。
迁移学习
近年来,迁移学习逐渐引起广泛的关注和研究。如图所示,传统的机器学 习方法要求训练集与测试集必须在相同的特征空间,同时必须有相同的数据分布。然 而现实生活中,多数领域的数据是有限的,特征是异构的,迁移学习很好地解决了如 何从已有的源领域迁移知识到目标领域,甚至可以解决异类数据之间的知识迁移问 题。迁移学习主要分为:实例迁移、特征迁移以及异类迁移。
同构空间下基于特征的 VGG-16 迁移
1、模型流程图
如下流程图,可分为四个阶段。
首先对数据进行预处理,预处理阶段主 要将所有的图像数据按照对应的类别进行调整大小(统一成三通道,大小为 3*150*150)、 随机变换(随机旋转、剪切、翻转等)和归一化;
其次,构建基于深度迁移学习的网 络。在这个过程中首先在烟雾数据集上利用 VGG-16 网络预训练一个全连接网络,具 体做法是将烟雾数据集作为输入,获取在 ImageNet 上已训练好的 VGG-16 网络中的卷 积部分输出,从而利用这个输出训练一个全连接网络;
然后将已在 ImageNet 上训练好 的 VGG 网络中卷积部分保留参数迁移过来,与之前预训练的全连接网络进行对接,从 而得到基于深度迁移学习模型,并进行模型训练和微调参数。
基于迁移学习的火焰、烟雾识别
使用基于 VGG-16 网络的迁移学习模型来进行烟雾识别。图是模型的架构图, 其中,左侧是本章所使用的烟雾识别模型,主要由两部分构成:(1)卷积层和下采样 层,该部分是由 VGG-16 网络迁移过来的,同时加载了对应的 VGG-16 网络已经训练 好的参数;(2)全连接层,该部分的全连接层来自预先训练好的全连接层。为了便于 描述,图中缺省了输入层和输出层。
实现效果图样例
火焰图像识别:
我是海浪学长,创作不易,欢迎点赞、关注、收藏、留言。
毕设帮助,疑难解答,欢迎打扰!