目录
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
选题指导:
大家好,这里是海浪学长毕设专题,本次分享的课题是
🎯基于深度学习的微博热点情感分析
课题背景和意义
社交媒体平台如微博每天都涌现出大量的用户生成内容,其中包括各种热点话题和用户的情感表达。对于企业、政府和个人而言,了解和分析这些微博热点话题背后的情感态度具有重要的意义。情感分析是一种文本挖掘技术,旨在自动识别和分类文本中的情感倾向,包括正面、负面或中性情感。
通过对微博热点话题的情感分析,可以了解公众对某个事件、产品、政策等的态度和情感倾向。这对于企业、政府等有关方面来说,可以及时了解公众舆论,并根据情感倾向采取相应的措施。通过分析微博热点话题的情感变化,可以追踪和洞察社会事件的发展趋势和公众的情感反应,对事件进行及时评估和干预。
实现技术思路
一、算法理论技术
1.1 TextRNN
循环神经网络(RNN)是一种用来处理序列数据的神经网络模型。与传统的前馈神经网络不同,RNN 在处理序列数据时引入了时间维度的概念,使得之前时刻的信息可以传递到当前时刻,从而具备了记忆的能力。
TextRNN 是一种基于 RNN 的文本分类模型。它将文本数据表示为一个序列,例如一个句子或一个文档,然后通过 RNN 模型对序列进行建模,以捕捉文本中的上下文信息和语义特征。在 TextRNN 中,每个词或字符作为一个时间步骤输入到 RNN 中,RNN 在每个时间步骤上接收当前输入和前一时刻的隐藏状态,并生成当前时刻的隐藏状态作为输出。最后,可以使用最后一个时间步骤的隐藏状态来进行文本分类任务。
TextRNN 模型的优点在于能够捕捉到文本中的长距离依赖关系和上下文信息,适用于处理需要考虑文本序列结构的任务,如情感分析、文本分类、机器翻译等。通过训练 TextRNN 模型,可以使其学习到文本数据中的语义信息,并能够对新的文本进行分类和预测。
1.2 LSTM
长短时记忆网络(LSTM)是在传统循环神经网络(RNN)的基础上提出的一种改进模型。传统的 RNN 在处理长序列时容易出现梯度消失和梯度爆炸的问题,导致难以有效地捕捉长期依赖关系。为了解决这个问题,LSTM引入了一个单元状态𝑐(cell state)来存储和传递长期的信息,从而增强了网络的记忆能力。
LSTM的主体结构与RNN相似,但在隐藏层中增加了一个单元状态𝑐,作为网络的记忆单元。在每个时间步骤,LSTM通过门控机制来控制信息的流动和更新。主要包括以下几个关键组件:
-
遗忘门(Forget Gate):决定是否忘记之前的记忆。它根据当前输入和前一时刻的隐藏状态来生成一个介于0和1之间的数值,0表示完全忘记,1表示完全保留。
-
输入门(Input Gate):决定如何更新记忆。它通过使用当前输入和前一时刻的隐藏状态来生成一个介于0和1之间的数值,用于控制更新的强度。
-
更新记忆(Update Memory):通过将遗忘门和输入门的结果与当前输入结合,来更新记忆状态。这一步骤使用一个激活函数,通常是tanh函数,将输入映射到一个新的记忆状态。
-
输出门(Output Gate):决定当前时刻隐藏状态的输出。它基于当前输入、前一时刻的隐藏状态和更新后的记忆状态,生成一个介于0和1之间的数值,用于控制输出的强度。
1.3 逻辑回归
逻辑回归和线性回归都属于广义线性模型(GLM),但逻辑回归是一种分类模型,常用于二分类问题。逻辑回归使用sigmoid函数将线性回归的结果映射到0和1之间,以预测样本的类别。逻辑回归通过线性组合特征并应用映射函数进行预测,将连续的线性求和结果映射为0到1之间的概率值。相比之下,线性回归是一种用于预测连续数值的回归模型。逻辑回归在分类问题中具有广泛的应用,而线性回归则用于回归分析。
二、 数据集
由于网络上缺乏适用的微博热点情感分析数据集,我决定自行爬取微博数据并创建一个全新的数据集。这个数据集将包含各种微博热点话题的文本和与情感相关的标签。通过对实际微博内容的采集,我能够捕捉到真实的用户情感表达和多样的情境背景,从而为我的研究提供更准确、可靠的数据基础。我相信这个自制的数据集将为微博热点情感分析研究提供有力的支持,并为情感分析领域的发展做出积极贡献。通过对这个数据集的深入分析,我们可以更好地理解人们对于微博热点话题的情感态度,从而为社交媒体舆情监测、情感分析算法的改进等方面提供有益的见解。
数据清洗是对评论数据进行检查和修正的过程,旨在去除重复评论、空白评论、过短的评论和重复的表情符号,同时删除无意义的标签和符号。这样的清洗操作可以净化数据集,去除干扰和无效信息,提高数据分析的准确性和可靠性。数据清洗是数据预处理的关键步骤,为后续的分析任务奠定了良好的基础。
在对清洗后的数据进行情感分类标注时,考虑到中立情感微博数量较少,数据分为积极和消极两类进行分类。积极评论主要表现为高兴、祝福、庆幸或其他正向态度,包括少量不含情绪的评论也划入积极类别。消极评论主要表现为生气、难过、鄙视或其他负向态度。在存在既有积极又有消极情感的评论时,根据整体情绪强度判定类别。通过以上原则对数据进行分类标注,将这些标注好的数据作为实验数据进行进一步分析。
三、相关代码
相关代码示例:
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.embedding = nn.Embedding(input_size, hidden_size)
self.rnn = nn.RNN(hidden_size, hidden_size)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, input):
embedded = self.embedding(input)
output, _ = self.rnn(embedded)
output = self.fc(output[:, -1, :])
return output
# 定义超参数
input_size = len(vocabulary) # 输入大小,即词汇表大小
hidden_size = 128 # 隐层大小
output_size = 2 # 输出大小,情感类别数
learning_rate = 0.001
num_epochs = 10
# 创建模型和损失函数
model = RNN(input_size, hidden_size, output_size)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
for inputs, labels in dataloader: # dataloader是自己根据数据集创建的数据加载器
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 使用训练好的模型进行预测
def predict_sentiment(text):
# 将文本转换为对应的数字序列,例如使用词袋模型或词嵌入
inputs = preprocess(text)
inputs = torch.tensor(inputs).unsqueeze(0)
output = model(inputs)
_, predicted = torch.max(output, 1)
sentiment = classes[predicted.item()]
return sentiment
最后
我是海浪学长,创作不易,欢迎点赞、关注、收藏。
毕设帮助,疑难解答,欢迎打扰!